Full list by year
1984
- Kooijman SALM and Metz JAJ (1984). On the dynamics of
chemically stressed populations: the deduction of
population consequences from effects on individuals.
Ecotox Environ Saf 8:254-274 http://dx.doi.org/10.1016/0147-6513(84)90029-0
key_gen, key_pop
1996
1997
- Klok C, De Roos AM, Marinissen JCY, Baveco HM and Ma
WC (1997). Assessing the effects of abiotic
environmental stress, on population growth in Lumbricus
rubellus (Lubricidae, Oligochaeta). Soil Biol
Biochem 29(3-4):287-293 http://dx.doi.org/10.1016/S0038-0717(96)00050-8
key_lif, key_pop
1998
- Pablos MV, Boleas S, Tarazona JV (1998). Use of
Mfu-galactoside enzymatic activity as ecotoxicological
endpoint on rainbow trout red blood cells. Bull Environ
Contam Toxicol 61:786-792 http://dx.doi.org/10.1007/s001289900829
key_alg
1999
- Urrestarazu Ramos E, Vaes WHJ, Mayer P and Hermens JLM
(1999). Algal growth inhibition of Chlorella
pyrenoidosa by polar narcotic pollutants: toxic
cell concentrations and QSAR modeling. Aquatic Toxicol
46(1):1-10 http://dx.doi.org/10.1016/S0166-445X(98)00111-8
key_alg
2004
2005
- Alda Álvarez O, Jager T, Kooijman SALM and Kammenga JE
(2005). Responses to stress of Caenorhabditis
elegans populations with different reproductive
strategies. Funct Ecol 19:656-664 http://dx.doi.org/10.1111/j.1365-2435.2005.01012.x
key_lif, key_pop
2006
- Alda Álvarez O, Jager T, Marco Redondo E and Kammenga
JE (2006). Physiological modes of action of toxic
chemicals in the nematode Acrobeloides nanus.
Environ Toxicol Chem 25:3230-3237 http://dx.doi.org/10.1897/06-097R.1
key_lif, key_pop
- Alda Álvarez O, Jager T, Nuñez Coloa B and Kammenga JE
(2006). Temporal dynamics of effect concentrations.
Environ Sci Technol 40:2478-2484 http://dx.doi.org/10.1021/es052260s
key_lif
- Arzul G, Quiniou F and Carrie C (2006). In vitro
test-based comparison of pesticide-induced sensitivity
in marine and freshwater phytoplankton. Toxicology
Mechanisms and Methods 16(8): 431-437 http://dx.doi.org/10.1080/15376520600698717
key_alg
- Jager T, Heugens EHW and Kooijman SALM (2006). Making
sense of ecotoxicological test results: towards
application of process-based models. Ecotoxicology
15:305-314 http://dx.doi.org/10.1007/s10646-006-0060-x
key_gen, key_lif, key_pop accepted
version.
- Pieters BJ, Jager T, Kraak MHS and Admiraal W (2006).
Modeling responses of Daphnia magna to pesticide
pulse exposure under varying food conditions: intrinsic
versus apparent sensitivity. Ecotoxicology 15:601-608 http://dx.doi.org/10.1007/s10646-006-0100-6
key_lif, key_tim
- Smit MGD, Kater BJ, Jak RG and Van den Heuvel-Greve MJ
(2006). Translating bioassay results to field population
responses using a Leslie-matrix model for the marine
amphipod Corophium volutator. Ecol Mod
196:515-526 http://dx.doi.org/10.1016/j.ecolmodel.2006.02.006
key_lif, key_pop
2007
- Billoir E, Péry ARR and Charles S (2007). Integrating
the lethal and sublethal effects of toxic compounds into
the population dynamics of Daphnia magna: a
combination of the DEBtox and matrix population models.
Ecol Mod 203(3-4):204-214 http://dx.doi.org/10.1016/j.ecolmodel.2006.11.021
key_lif, key_pop
- Ducrot V, Péry ARR, Mons R, Queau H, Charles S and
Garric J (2007). Dynamic energy budget as a basis to
model population-level effects of zinc-spiked sediments
in the gastropod Valvata piscinalis. Environ
Toxicol Chem 26(8):1774-1783 http://dx.doi.org/10.1897/06-556R.1
key_lif
- Hall, SR, Becker, C and Cáceres, CE (2007). Parasitic
castration: a perspective from a model of dynamic energy
budgets. Integr Comp Biol 47(2):295-309 http://dx.doi.org/10.1093/icb/icm057
key_lif
- Jager T, Crommentuijn T, Van Gestel CAM and Kooijman
SALM (2007). Chronic exposure to chlorpyrifos reveals
two modes of action in the springtail Folsomia
candida. Environ Pollut 145:452-458 http://dx.doi.org/10.1016/j.envpol.2006.04.028
key_lif, key_pop
- Klok C, Holmstrup M and Damgaardt C (2007). Extending
a combined dynamic energy budget matrix population model
with a Bayesian approach to assess variation in the
intrinsic rate of population increase. An example in the
earthworm Dendrobaena octaedra. Environ Toxicol
Chem 26(11):2383-2388 http://dx.doi.org/10.1897/07-223R.1
key_lif, key_pop
2008
- Billoir E, Delignette-Muller ML, Péry ARR, Geffard O
and Charles S (2008). Statistical cautions when
estimating DEBtox parameters. J Theor Biol 254(1):55-64
http://dx.doi.org/10.1016/j.jtbi.2008.05.006
key_lif, key_gen
- Billoir E, Delignette-Muller ML, Péry ARR and Charles
S (2008). A Bayesian approach to analyzing
ecotoxicological data. Environ Sci Technol
42(23):8978-8984 http://dx.doi.org/10.1021/es801418x
key_lif
- Klok C (2008). Gaining insight in the interaction of
zinc and population density with a combined Dynamic
Energy Budget and population model. Environ Sci Technol
42(23):8803-8808 http://dx.doi.org/10.1021/es8016599
key_lif, key_pop
- Kooi BW, Bontje D and Liebig M (2008). Model analysis
of a simple aquatic ecosystems with sublethal toxic
effects. Math Biosci Eng 5:771-787 http://dx.doi.org/10.3934/mbe.2008.5.771
key_alg, key_com
- Kooi BW, Bontje D, Van Voorn GAK and Kooijman SALM
(2008). Sublethal toxic effects in a simple aquatic food
chain. Ecol Modelling 112:304-318 http://dx.doi.org/10.1016/j.ecolmodel.2007.10.042
key_alg, key_com
- Péry ARR, Gust M, Vollat B, Mons R, Ramil M, Fink G,
Ternes T, Garric J (2008). Fluoxetine effects assessment
on the life cycle of aquatic invertebrates. Chemosphere
73:300–304 http://dx.doi.org/10.1016/j.chemosphere.2008.06.029
key_lif
2009
- Billoir E, Ferrao AD, Delignette-Muller ML and Charles
S (2009). DEBtox theory and matrix population models as
helpful tools in understanding the interaction between
toxic cyanobacteria and zooplankton. J Theor Biol
258(3):380-388 http://dx.doi.org/10.1016/j.jtbi.2008.07.029
key_lif, key_pop
- Bontje D, Kooi BW, Liebig M and Kooijman SALM (2009).
Modelling long-term ecotoxicological effects on an algal
population under dynamic nutrient stress. Wat Res
43:3292-3300 http://dx.doi.org/10.1016/j.watres.2009.04.036
key_alg, key_pop
2010
- Baas J, Jager T and Kooijman SALM (2010).
Understanding toxicity as processes in time. Sci Total
Environ 408:3735-3739 http://dx.doi.org/10.1016/j.scitotenv.2009.10.066
key_gen
- Baas J, Jager T and Kooijman SALM (2010). A review of
DEB theory in assessing toxic effects of mixtures. Sci
Total Environ 408:3740-3745 http://dx.doi.org/10.1016/j.scitotenv.2009.09.037
key_gen, key_mix
- Heckmann LH, Baas J and Jager T (2010). Time is of the
essence. Environ Toxicol Chem 29:1396-1398 http://dx.doi.org/10.1002/etc.163
key_gen, key_tim
- Jager T and C Klok (2010). Extrapolating toxic effects
on individuals to the population level: the role of
dynamic energy budgets. Phil Trans R Soc B 365:3531-3540
http://dx.doi.org/10.1098/rstb.2010.0137
key_gen, key_pop, key_db3, key_lif
- Jager T, Vandenbrouck T, Baas J, De Coen WM and
Kooijman SALM (2010). A biology-based approach for
mixture toxicity of multiple endpoints over the life
cycle. Ecotoxicology 19:351-361 http://dx.doi.org/10.1007/s10646-009-0417-z
key_gen, key_mix, key_db3, key_lif accepted
version and SI.
- Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK,
Keller AA (2010). Impacts of metal oxide nanoparticles
on marine phytoplankton. Environ Sci Technol
44(19):7329-7334 http://dx.doi.org/10.1021/es100247x
key_alg
- Muller EB, Nisbet RM and Berkley HA (2010). Sublethal
toxicant effects with dynamic energy budget theory:
model formulation. Ecotoxicology 19(1):48-60 http://dx.doi.org/10.1007/s10646-009-0385-3
key_lif, key_pop
- Muller EB, Osenberg CW, Schmitt RJ, Holbrook SJ and
Nisbet RM (2010). Sublethal toxicant effects with
dynamic energy budget theory: application to mussel
outplants. Ecotoxicology 19(1): 38-47 http://dx.doi.org/10.1007/s10646-009-0384-4
key_lif
- Swain S, Wren J, Stürzenbaum SR, Kille P, Morgan AJ,
Jager T, Jonker MJ, Hankard PK, Svendsen C, Chaseley J,
Hedley BA, Blaxter M and Spurgeon D (2010). Linking
toxicant physiological mode of action in with induced
gene expression changes Caenorhabditis elegans.
BMC Systems Biology 4:32 http://dx.doi.org/10.1186/1752-0509-4-32
key_mol, key_lif
2011
- Ashauer R, Agatz A, Albert C, Ducrot V, Galic N,
Hendriks J, Jager T, Kretschmann A, O’Connor I, Rubach
MN, Nyman A-M, Schmitt W, Stadnicka J, van den Brink PJ
and Preuss TG (2011). Toxicokinetic-toxicodynamic
modelling of quantal and graded sub-lethal endpoints - a
brief discussion of concepts. Environ Toxicol Chem
30(11):2519-2524 http://dx.doi.org/10.1002/etc.639
key_gen, key_lif
- Billoir E, Delhaye H, Clément B, Delignette-Muller ML
and Charles S (2011). Bayesian modelling of daphnid
responses to time-varying cadmium exposure in laboratory
aquatic microcosms. Ecotoxicol Environ Saf 74:693–702. http://dx.doi.org/10.1016/j.ecoenv.2010.10.023
key_lif
- Eynaud Y, Nisbet RM and Muller EB (2011). Impact of
excess and harmful radiation on energy budgets in
scleractinian corals. Ecol Mod 222(7):1315-1322
http://dx.doi.org/10.1016/j.ecolmodel.2011.01.004
key_lif, key_alg
- Jager T and Selck H (2011). Interpreting toxicity data
in a DEB framework; a case study for nonylphenol in the
marine polychaete Capitella teleta. J Sea Res
66:456-462 http://dx.doi.org/10.1016/j.seares.2011.04.003
key_gen, key_lif, key_db3 accepted
version and SI.
- Massarin S, Beaudouin R, Zeman F, Floriani M, Gilbin
R, Alonzo F and Pery ARR (2011). Biology-based modeling
to analyze uranium toxicity data on Daphnia magna
in a multigeneration study. Environ Sci Technol
45(9):4151-4158 http://dx.doi.org/10.1021/es104082e
key_lif
- Wren, JF, Kille P, Spurgeon DJ, Swain S, Sturzenbaum
SR, and Jager T (2011). Application of physiologically
based modelling and transcriptomics to probe the systems
toxicology of aldicarb for Caenorhabditis elegans
(Maupas 1900). Ecotoxicology 20:397-408 http://dx.doi.org/10.1007/s10646-010-0591-z
key_mol, key_lif
- Zaldivar JM and Baraibar J (2011). A biology-based
dynamic approach for the reconciliation of acute and
chronic toxicity tests: Application to Daphnia magna.
Chemosphere 82(11): 1547-1555 http://dx.doi.org/10.1016/j.chemosphere.2010.11.062
key_lif, key_pop
2012
- Augustine S, Gagnaire B, Adam-Guillermin C and
Kooijman SALM (2012). Effects of uranium on the
metabolism of zebrafish, Danio rerio. Aquat
Toxicol 118:9-26 http://dx.doi.org/10.1016/j.aquatox.2012.02.029
key_db3, key_lif
- Billoir E, Delhaye H, Forfait C, Clément B,
Triffault-Bouchet G, Charles S and Delignette-Muller ML
(2012). Comparison of bioassays with different exposure
time patterns: the added value of dynamic modelling in
predictive ecotoxicology. Ecotoxicol Environ Saf
75:80-86. http://dx.doi.org/10.1016/j.ecoenv.2011.08.006
key_lif
- Biron PA, Massarin S, Alonzo F, Garcia-Sanchez L,
Charles S and Billoir E (2012). Population-level
modeling to account for multigenerational effects of
uranium in Daphnia magna. Environ Sci Technol
46:1136−1143 http://dx.doi.org/10.1021/es202658b
key_lif, key_pop
- Jager T and Zimmer EI (2012). Simplified Dynamic
Energy Budget model for analysing ecotoxicity data.
Ecol. Mod. 225:74-81 http://dx.doi.org/10.1016/j.ecolmodel.2011.11.012
key_gen, key_pop, key_lif. accepted
version and SI.
- Klanjscek T, Nisbet RM, Priester JH, Holden PA (2012).
Modeling physiological processes that relate toxicant
exposure and bacterial population dynamics. PLoS ONE
7(2): e26955 http://dx.doi.org/10.1371/journal.pone.0026955
key_alg, key_pop
- Klok C, Hjorth M and Dahllöf I (2012). Qualitative use
of Dynamic Energy Budget theory in ecotoxicology. Case
study on oil contamination and Arctic copepods. J Sea
Res 73:24–31
http://dx.doi.org/10.1016/j.seares.2012.06.004
key_gen
- Martin B, Zimmer EI, Grimm V and Jager T (2012).
Dynamic Energy Budget theory meets individual-based
modelling: a generic and accessible implementation.
Methods Ecol Evol 3:445-449 http://dx.doi.org/10.1111/j.2041-210X.2011.00168.x
key_gen, key_db3, key_pop (does not include toxicants,
but can easily accommodate that!)
- Zimmer EI, Jager T, Ducrot V, Lagadic L and Kooijman
SALM (2012). Juvenile food limitation in standardized
tests - a warning to ecotoxicologists. Ecotoxicology
21:2195-2204 http://dx.doi.org/10.1007/s10646-012-0973-5
key_gen, key_gro
2013
- Holden PA, Nisbet RM, Lenihan HS, Miller RJ, Cherr GN,
Schimel JP and Gardea-Torresdey JL (2013). Ecological
nanotoxicology: integrating nanomaterial hazard
considerations across the subcellular, population,
community, and ecosystems levels. Acc Chem Res
46(3):813-822 http://dx.doi.org/10.1021/ar300069t
key_gen
- Jager T (2013). All individuals are not created equal;
accounting for inter-individual variation in fitting
life-history responses to toxicants. Environ Sci Technol
47:1664-1669 http://dx.doi.org/10.1021/es303870g
key_gro, key_gen accepted
version and SI.
- Jager T, Barsi A and Ducrot V (2013). Hormesis on
life-history traits: is there such a thing as a free
lunch? Ecotoxicology 22:263-270 http://dx.doi.org/
10.1007/s10646-012-1022-0 key_gen accepted
version.
- Jager T, Martin BT and Zimmer EI (2013). DEBkiss or
the quest for the simplest generic model of animal life
history. J Theor Biol 328:9-18 http://dx.doi.org/10.1016/j.jtbi.2013.03.011
key_lif, key_gen. (toxicant stress is discussed in supp.
info.) accepted
version and SI.
- Klanjscek T, Nisbet RM, Priester JH and Holden PA
(2013). Dynamic energy budget approach to modeling
mechanisms of CdSe quantum dot toxicity. Ecotoxicology
22:319–330 http://dx.doi.org/10.1007/s10646-012-1028-7
key_alg, key_pop
- Martin B, Jager T, Nisbet RM, Preuss TG and Grimm V
(2013). Predicting population dynamics from the
properties of individuals: a cross-level test of Dynamic
Energy Budget theory. American Naturalist 181(4):506-519
http://dx.doi.org/10.1086/669904
key_lif, key_pop, key_db3. (does not include toxicant
stress but food stress)
- Martin BT, Jager T, Nisbet RM, Preuss TG,
Hammers-Wirtz M and Grimm V (2013). Extrapolating
ecotoxicological effects from individuals to
populations: a generic approach based on Dynamic Energy
Budget theory and individual-based modeling.
Ecotoxicology 22:574-583 http://dx.doi.org/10.1007/s10646-013-1049-x
key_pop, key_db3
2014
- Barsi A, Jager T, Collinet M, Lagadic L and Ducrot V
(2014). Considerations for test design to accommodate
energy-budget models in ecotoxicology: a case study for
acetone in the pond snail Lymnaea stagnalis.
Environ Toxicol Chem 33(7):1466-1475 http://dx.doi.org/10.1002/etc.2399
key_lif
- Jager T, Barsi A, Hamda NT, Martin BT, Zimmer EI and
Ducrot V. (2014). Dynamic energy budgets in population
ecotoxicology: applications and outlook. Ecol Mod
280:140-147
http://dx.doi.org/10.1016/j.ecolmodel.2013.06.024
key_gen, key_pop accepted
version.
- Jager T, Gudmundsdóttir EM and Cedergreen N (2014).
Dynamic modeling of sub-lethal mixture toxicity in the
nematode Caenorhabditis elegans. Environ Sci
Technol 48:7026-7033 http://dx.doi.org/10.1021/es501306t
key_lif, key_mix accepted
version and SI.
- Martin B, Jager T, Nisbet RM, Preuss TG and Grimm V
(2014). Limitations of extrapolating toxic effects on
reproduction to the population level. Ecol Appl
24(8):1972-1983 http://dx.doi.org/10.1890/14-0656.1
key_pop, key_db3
- Muller EB, Hanna SK, Lenihan HS, Miller RJ and Nisbet
RM (2014). Impact of engineered zinc oxide nanoparticles
on the energy budgets of Mytilus galloprovincialis.
J Sea Res 94:29–36 http://dx.doi.org/10.1016/j.seares.2013.12.013
key_lif
- Muller EB and Nisbet RM (2014). Dynamic energy budget
modeling reveals the potential of future growth and
calcification for the coccolithophore Emiliania
huxleyi in an acidified ocean. Global Change
Biology 20(6):2031-2038 http://dx.doi.org/10.1111/gcb.12547
key_alg (deals with pH stress)
- Zimmer EI, Ducrot V, Jager T, Koene J, Lagadic L and
Kooijman SALM (2014). Metabolic acceleration in the pond
snail Lymnaea stagnalis? J Sea Res 94:84-91 http://dx.doi.org/10.1016/j.seares.2014.07.006
key_db3, key_lif (does not include toxicant stress but
food stress)
2015
- Goussen B, Beaudouin R, Dutilleul M, Buisset-Goussen
A, Bonzom JM and Péry ARR (2015). Energy-based modelling
to assess effects of chemicals on Caenorhabditis
elegans: a case study on uranium. Chemosphere
120:507–514 http://dx.doi.org/10.1016/j.chemosphere.2014.09.006
key_lif
- Goussen B, Péry ARR, Bonzom JM and Beaudouin R
(2015). Transgenerational adaptation to pollution
changes energy allocation in populations of nematodes.
Environ Sci Technol 49:12500−12508 http://dx.doi.org/10.1021/acs.est.5b03405
key_lif
2016
- Cedergreen N, Nørhave NJ, Svendsen C and Spurgeon DJ
(2016). Variable temperature stress in the nematode Caenorhabditis
elegans (Maupas) and its implications for
sensitivity to an additional chemical stressor. PLoS ONE
11(1):e0140277. http://dx.doi.org/10.1371/journal.pone.0140277
key_lif, key_mix
- Goussen B, Price OR, Rendal C and Ashauer R (2016).
Integrated presentation of ecological risk from multiple
stressors. Sci Rep 6:36004 http://dx.doi.org/10.1038/srep36004
key_pop, key_mix
- Jager T (2016). Predicting environmental risk: a road
map for the future. J Toxicol Env Health Part A
79:572-584. key_gen http://dx.doi.org/10.1080/15287394.2016.1171986.
(general paper on the role of TKTD
models and energy budgets in risk assessment) accepted
version.
- Jager T, Ravagnan E and Dupont S (2016). Near-future
ocean acidification impacts maintenance costs in
sea-urchin larvae: identification of stress factors and
tipping points using a DEB modelling approach. J Exp Mar
Biol Ecol 474:11-17. http://dx.doi.org/10.1016/j.jembe.2015.09.016
key_gro (deals with pH stress) accepted
version and SI.
- Margerit A, Gomez E and Gilbin R (2016). Dynamic
energy-based modeling of uranium and cadmium joint
toxicity to Caenorhabditis elegans. Chemosphere
146:405–412. http://dx.doi.org/10.1016/j.chemosphere.2015.12.029
key_lif, key_mix
2017
- Desforges JPW, Sonne C and Dietz R (2017). Using
energy budgets to combine ecology and toxicology in a
mammalian sentinel species. Scientific Reports 7:46267.
http://dx.doi.org/10.1038/srep46267
key_lif
- Miller RJ,Muller EB, Cole B, Martin T, Nisbet R,
Bielmyer-Fraser GK, Jarvis TA, Keller AA, Cherr G and
Lenihan HS (2017). Photosynthetic efficiency predicts
toxic effects of metal nanomaterials in phytoplankton.
Aquatic Toxicol 183:85-93. http://dx.doi.org/10.1016/j.aquatox.2016.12.009
key_alg
- Lecomte-Pradines C, Hertel-Aas T, Coutris C, Gilbin R,
Oughton D, Alonzo F (2017). A dynamic energy-based model
to analyze sublethal effects of chronic gamma
irradiation in the nematode Caenorhabditis elegans.
J Toxicol Environ Health, Part A 80(16–18):830–844. https://doi.org/10.1080/15287394.2017.1352194
key_lif
2018
- Ashauer R and Jager T (2018). Physiological modes of
action across species and toxicants: The key to
predictive ecotoxicology. Environ. Sci.: Processes
Impacts. http://dx.doi.org/10.1039/C7EM00328E
(Open Access) key_gen (review)
- Baas J, Augustine S, Marques GM and Dorne JL (2018).
Dynamic energy budget models in ecological risk
assessment: from principles to applications. Sci Total
Environ 628-629:249-260 https://doi.org/10.1016/j.scitotenv.2018.02.058
key_gen (review)
- EFSA (2018). Scientific Opinion on the state of the
art of Toxicokinetic/Toxicodynamic (TKTD) effect models
for regulatory risk assessment of pesticides for aquatic
organisms. EFSA journal 16(8): 5377. https://doi.org/10.2903/j.efsa.2018.5377
key_gen
- Jager T and Ashauer R (2018). How to evaluate the
quality of toxicokinetic-toxicodynamic models in the
context of environmental risk assessment. IEAM
14(5):604-614. https://doi.org/10.1002/ieam.2026
key_gen (general paper on TKTD models,
using GUTS as example) accepted
version.
- Murphy CA, Nisbet RM, Antczak P, Garcia-Reyero N,
Gergs A, Lika K, Mathews T, Muller EB, Nacci D, Peace A,
Remien CH, Schultz IR, Stevenson LM and Watanabe KH
(2018). Incorporating suborganismal processes into
Dynamic Energy Budget models for ecological risk
assessment. IEAM 14(5):615-624 https://doi.org/10.1002/ieam.4063
key_gen, key_mol
- Zimmer EI, TG Preuss, S Norman, B Minten and V Ducrot
(2018). Modelling effects of time-variable exposure to
the pyrethroid beta-cyfluthrin on rainbow trout early
life stages. Environ Sci Europe 30:36. https://doi.org/10.1186/s12302-018-0162-0
key_db3, key_gro
2019
- Accolla C, M Vaugeois and VE Forbes (2019). Similar
individual-level responses to stressors have different
population-level consequences among closely related
species of trout. Sci Total Environ 693, 133295. https://doi.org/10.1016/j.scitotenv.2019.07.101
key_db3, key_pop
- Martin T, H Thompson, P Thorbek and R Ashauer (2019).
Toxicokinetic−toxicodynamic modeling of the effects of
pesticides on growth of Rattus norvegicus. Chem
Res Toxicol 32(11):2281-2294. http://dx.doi.org/10.1021/acs.chemrestox.9b00294
key_gro
- Muller EB, K Lika, RM Nisbet, IR Schultz, J Casas, A
Gergs, CA Murphy, D Nacci and KH Watanabe (2019).
Regulation of reproductive processes with Dynamic Energy
Budgets. Functional Ecology 33(5):819-832. https://dx.doi.org/10.1111/1365-2435.13298
key_db3
- Pereira CMS, K Vlaeminck, K Viaene and KAC De
Schamphelaere (2019). The unexpected absence of nickel
effects on a Daphnia population at 3 temperatures is
correctly predicted by a dynamic energy budget
individual‐based model. Environ Toxicol Chem
38(7):1423–1433. https://doi.org/
10.1002/etc.4407 key_pop
- Sadoul B, S Augustine, E Zimmer, ML Bégout and MM
Vijayan (2019). Prediction of long-term variation in
offspring metabolism due to BPA in eggs in rainbow trout
using the DEB model. J Sea Res 143:222-230. https://doi.org/10.1016/j.seares.2018.05.011
key_db3
- Vighi M, A Barsi, A Focks and F Grisoni (2019).
Predictive models in ecotoxicology: bridging the gap
between scientific progress and regulatory applicability
- remarks and research needs. IEAM 15(3):345-351. https://dx.doi.org/10.1002/ieam.4136
key_gen (review)
- Vlaeminck K, KPJ Viaene, P Van Sprang, S Baken and KAC
De Schamphelaere (2019). The use of mechanistic
population models in metal risk assessment: combined
effects of copper and food source on Lymnaea
stagnalis populations. Environ Tox Chem
38(5):1104-1119. https://dx.doi.org/10.1002/etc.4391
key_db3, key_pop
2020
- Accolla C, M Vaugeois, P Rueda-Cediel, A Moore, GM
Marques, P Marella and VE Forbes (2020). DEB-tox and
data gaps: consequences for individual-level outputs.
Ecol Modell 431:109107. https://doi.org/10.1016/j.ecolmodel.2020.109107
key_db3
- Ashauer R, R Kuhl, E Zimmer and M Junghans (2020),
Effect modelling quantifies the difference between the
toxicity of average pesticide concentrations and
time‐variable exposures from water quality monitoring.
Environ Toxicol Chem 39(11):2158-2168. https://doi.org/10.1002/etc.4838
key_tim
- Goussen B, C Rendal, D Sheffield, E Butler, OR Price
and R Ashauer (2020). Bioenergetics modelling to analyse
and predict the joint effects of multiple stressors:
meta-analysis and model corroboration. Sci Total Environ
749:141509. https://doi.org/10.1016/j.scitotenv.2020.141509
key_mix, key_lif (Open Access)
- Jager T (2020). Revisiting simplified DEBtox models
for analysing ecotoxicity data. Ecol Modell 416:108904.
https://doi.org/10.1016/j.ecolmodel.2019.108904
key_gen accepted
version and SI.
- Matyja K, J Rybak, B Hanus-Lorenz, M Wróbel and R
Rutkowski (2020). Effects of polystyrene diet on Tenebrio
molitor larval growth, development and survival:
Dynamic Energy Budget (DEB) model analysis.
Environmental Pollution (in press). https://doi.org/10.1016/j.envpol.2020.114740
key_gro
- Sherborne N and N Galic (2020). Modelling sublethal
effects of chemicals: application of a simplified
dynamic energy budget model to standard ecotoxicity
data. Environ Sci Technol 54(12):7420-7429. https://doi.org/10.1021/acs.est.0c00140
key_gen
- Sherborne N, N Galic and R Ashauer (2020). Sublethal
effect modelling for environmental risk assessment of
chemicals: problem definition, model variants,
application and challenges. Sci Total Environ
745:141027. https://doi.org/10.1016/j.scitotenv.2020.141027
key_gen
- Vaugeois M, PA Venturelli, SL Hummel, C Accolla and VE
Forbes (2020). Population context matters: Predicting
the effects of metabolic stress mediated by food
availability and predation with an agent- and energy
budget-based model. Ecological Modelling 416:108903. https://doi.org/10.1016/j.ecolmodel.2019.108903
key_pop, key_db3
2021
- Farkas J, LH. Svendheim, T Jager, T Ciesielski, T
Nordtug, B Kvæstad, BH Hansen, T Kristensen and PA
Olsvik (2021). Exposure to low environmental copper
concentrations does not affect survival and development
in Atlantic cod (Gadus morhua) early life stages.
Toxicology Reports 8:1909-1916. https://doi.org/10.1016/j.toxrep.2021.11.012
key_gen
- Gergs, A, J Hager, E Bruns and TG Preuss (2021),
Disentangling mechanisms behind chronic lethality
through toxicokinetic‐toxicodynamic modelling. Environ
Toxicol Chem. 40(6):1706-1712. https://doi.org/10.1002/etc.5027
key_gro, key_tim, key_db3
- Hansul, S, A Fettweis, E Smolders and K De
Schamphelaere (2021), Interactive metal mixture toxicity
to Daphnia magna populations as an emergent
property in a Dynamic Energy Budget Individual-Based
Model. Environ Toxicol Chem 40(11):3034-3048. https://doi.org/10.1002/etc.5176
key_mix, key_pop, key_db3
- Koch, J and KAC De Schamphelaere (2021), Making sense
of life‐history effects of the antidepressant citalopram
in the copepod Nitocra spinipes using a
bioenergetics model. Environ Toxicol Chem
40(7):1928-1939. https://doi.org/10.1002/etc.5044
key_db3
- Na J, Y Kim, J Song, T Shim, K Cho and J Jung (2021).
Evaluation of the combined effect of elevated
temperature and cadmium toxicity on Daphnia magna using
a simplified DEBtox model. Environ Pollut 291:118250. https://doi.org/10.1016/j.envpol.2021.118250
key_lif, key_mix
- Schmolke A, SM Bartell, C Roy D Desmarteau, A Moore,
MJ Cox, NL Maples-Reynolds N Galic and R Brain (2021).
Applying a hybrid modeling approach to evaluate
potential pesticide effects and mitigation effectiveness
for an endangered fish in simulated oxbow habitats.
Environ Toxicol Chem 40(9):2615-2628. https://doi.org/10.1002/etc.5144.
key_sur, key_tim
- Schultz CL, S Bart, E Lahive and DJ Spurgeon (2021).
What is on the outside matters - surface charge and
dissolve organic matter association affect the toxicity
and physiological mode of action of polystyrene
nanoplastics to C. elegans. Environ Sci Technol
55(9):6065-6075. https://doi.org/10.1021/acs.est.0c07121
key_lif
- Svendheim LH, PA Olsvik, IB Øverjordet, T Jager, TM
Ciesielski, T Nordtug, T Kristensen, BH Hansen, B
Kvæstad, D Altin and J Farkas (2021). Investigating the
effects of marine tailing exposure on the development,
growth, and lipid accumulation of Calanus
finmarchicus. Chemosphere 282:131051. https://doi.org/10.1016/j.chemosphere.2021.131051
- Vlaeminck K, KPJ Viaene, P Van Sprang and KAC De
Schamphelaere (2021). Development and validation of a
mixture toxicity implementation in the dynamic energy
budget–individual‐based model: effects of copper and
zinc on Daphnia magna populations. Environ
Toxicol Chem 40(2):513-527. https://doi.org/10.1002/etc.4946
key_lif, key_mix
2022
- Accolla C, A Schmolke, A Jacobson, C Roy, VE Forbes, R
Brain and N Galic (2022). Modeling pesticide effects on
multiple threatened and endangered cyprinid fish
species: the role of life-history traits and ecology.
Ecologies 3(2):183-205. https://doi.org/10.3390/ecologies3020015
key_db3, key_pop
- Everaert G, K Vlaeminck, MB Vandegehuchte and CR
Janssen (2022), Effects of microplastic on the
population dynamics of a marine copepod: insights from a
laboratory experiment and a mechanistic model. Environ
Toxicol Chem 41(7):1663-1674. https://doi.org/10.1002/etc.5336
key_db3, key_pop
- Huang CW, PL Yen, YH Kuo, CH Chang and VHC Liao
(2022). Nanoplastic exposure in soil compromises the
energy budget of the soil nematode C. elegans
and decreases reproductive fitness. Environ Pollut.
312:120071. https://doi.org/10.1016/j.envpol.2022.120071
key_lif
- Jager T, M Trijau, N Sherborne, B Goussen and R
Ashauer (2022). Considerations for using reproduction
data in toxicokinetic-toxicodynamic modelling. Integr
Environ Assess Manag 18(2):479-487. https://doi.org/10.1002/ieam.4476.
Preprint deposited at arXiv: https://doi.org/10.48550/arXiv.2105.03254
key_gen
- Moreira JM, AC Mendes, AL Maulvault, A Marques, R
Rosa, P Pousão-Ferreira, T Sousa, P Anacleto and GM
Marques (2022). Impacts of ocean warming and
acidification on the energy budget of three commercially
important fish species. Conservation Physiology
10(1):coac048. https://doi.org/10.1093/conphys/coac048.
key_deb3. (no toxicants but ocean
warming and acidification)
- Sherborne N, T Jager, B Goussen, M Trijau and R
Ashauer (2022). The application and limitations of
exposure multiplication factors in sublethal effect
modelling. Scientific Reports 12:6031. https://doi.org/10.1038/s41598-022-09907-1
key_lif, key_gen, key_tim.
- Vaugeois, M, PA Venturelli, SL Hummel and VE Forbes
(2022), Population modeling to inform management and
recovery efforts for lake sturgeon, Acipenser
fulvescens. Integr Environ Assess Manag
18(6):1597-1608. http://dx.doi.org/10.1002/ieam.4578
key_db3, key_pop
- Vlaeminck, K, KPJ Viaene, P Van Sprang and KAC De
Schamphelaere (2022), Predicting combined effects of
chemical stressors: population-level effects of organic
chemical mixtures with DEB-IBM. Environ Toxicol Chem
41(9):2240-2258. https://doi.org/10.1002/etc.5409
key_deb3, key_pop, key_mix
2023
- Bart S, T Jager, S Short, A Robinson, D Sleep, MG
Pereira, DJ Spurgeon and R Ashauer (2023). Modelling the
impact of the pyrethroid insecticide cypermethrin on the
life cycle of the soil dwelling annelid Enchytraeus
crypticus, an original experimental design to
calibrate a DEB-TKTD model. Ecotox Environ Saf
250:114499. https://doi.org/10.1016/j.ecoenv.2023.114499
open access. key_mix, key_lif
- Chaabani S, S Einum, VLB Jaspers, AG Asimakopoulos, J
Zhang and E Muller (2023). Impact of the antidepressant
Bupropion on the Dynamic Energy Budget of Daphnia
magna. Sci Total Environ 895:164984. https://doi.org/10.1016/j.scitotenv.2023.164984.
key_lif, key_db3
- Jager T, B Goussen and A Gergs (2023). Using the
standard DEB animal model for
toxicokinetic-toxicodynamic analysis. Ecol Modell
475:110187. https://doi.org/10.1016/j.ecolmodel.2022.110187.
key_gen, key_db3
- Koch J and KAC De Schamphelaere (2023), Investigating
population-level toxicity of the antidepressant
citalopram in harpacticoid copepods using in vivo
methods and bioenergetics-based population modeling.
Environ Toxicol Chem 42(5):1094-1108. https://doi-org.vu-nl.idm.oclc.org/10.1002/etc.5599.
key_lif, key_pop
- Kuo YH, CM How, CW Huang, PL Yen, CW Yu, CH Chang and
VHC Liao (2023). Co-contaminants of ethinylestradiol and
sulfamethoxazole in groundwater exacerbate ecotoxicity
and ecological risk and compromise the energy budget of
C. elegans. Aquatic Toxicology 257:106473. https://doi.org/10.1016/j.aquatox.2023.106473.
key_lif, key_mix
- Matyja K (2023). Sublethal effects of binary mixtures
of Cu2+ and Cd2+ on Daphnia magna: standard
dynamic energy budget (DEB) model analysis. Environ
Pollut 122142 (preprint). https://doi.org/10.1016/j.envpol.2023.122142.
key_db3, key_mix, key_lif
- Stevenson LM, EB Muller, D Nacci, BW Clark, A
Whitehead and RM Nisbet (2023). Connecting suborganismal
data to bioenergetic processes: killifish embryos
exposed to a dioxin-like compound. Environ Toxicol Chem
42(9):2040-2053. https://doi.org/10.1002/etc.5680.
key_mol
- Trijau M, B Goussen, R Brain, J Maul and N Galic
(2023) Development of a mechanistic model for analyzing
avian reproduction data for pesticide risk assessment.
Environ Pollut 327:121477. https://doi.org/10.1016/j.envpol.2023.
key_lif, key_db3
- Weighman K, K Viaene, J Koch and K De Schamphelaere
(2023). Using a dynamic energy budget model to
investigate the physiological mode of action of lead
(Pb) to Lymnaea stagnalis. Aquatic Toxicology
261:106617. https://doi.org/10.1016/j.aquatox.2023.106617.
key_lif, key_db3
- ...
|