DEBtox information
Making sense of ecotoxicity test results



Main menu


Submenu

DEBtox information

DEBtox information

Publications / Papers on survival

Explanation


The papers here are organised by year of publication. Each paper gets a few keys to facilitate searching by topic. Each paper has a Digital Object Identifier (DOI), that uniquely identifies it on the internet. Clicking the link provides the abstract, and also the PDF if you have access rights to that journal. Papers dealing with sub-lethal endpoints only, are located here. Inclusion of a paper in this list does not mean an endorsement or a quality mark of any kind.

Note: since January 2024, I no longer have access to pay-walled journal papers. Therefore, I cannot check for all new papers whether they belong in the list and what description (with the keys in the table right) are most appropriate. The papers that I did not check will be indicated with text in parentheses at the end of the reference. I will do my best, and please send me an email if I am incorrect!

Requirements to be included


Only hazard models are included in the list below. That means that death is treated as a chance process at the level of the individual ('stochastic death'). Papers dealing solely with 'individual tolerance' (e.g., the dynamic CBR models) are not (yet) included.


Essential reading


  • Jager T, C Albert, TG Preuss and R Ashauer (2011). General Unified Threshold model of Survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529-2540. http://dx.doi.org/10.1021/es103092a. accepted version and SI.
  • Jager T and R Ashauer (2023). Modelling survival under chemical stress. A comprehensive guide to the GUTS framework. Version 3.0. Toxicodynamics Ltd., York, UK. Available from Leanpub: https://leanpub.com/guts_book. (first version in 2018)

Download of accepted versions


On this page, I will try to include downloadable PDF versions of my papers. This will be my version of the paper; the last submitted version that was accepted (post peer review, but pre formatting by the journal). I will only offer that version for download below when the publisher/journal allows this, and adding the license information as prescribed by the publisher/journal. Furthermore, I am only offering downloads for papers on which I am the first author. It may take some time before papers are added ... Note that there may be (small) differences with the published version Also note that the affiliations and contact information of authors may well have changed in the meantime.



Key

Description

key_gen
general paper
key_sur
survival data only
key_mix
dealing with mixtures of toxicants
key_mol
related to molecular level
key_tim
time-varying exposure
key_pop
population context

Full list by year


1981

1994

  • Bedaux JJM and Kooijman SALM (1994). Statistical analysis of bioassays based on hazard modelling. Environ Ecol Stat 1:303-314. http://dx.doi.org/10.1007/BF00469427 key_sur, key_gen
1996

1997

1998

  • Gerritsen A, van der Hoeven N and Pielaat A (1998). The acute toxicity of selected alkylphenols to young and adult Daphnia magna. Ecotox Environ Saf 39(3):227-232 http://dx.doi.org/10.1006/eesa.1997.1578 key_sur
2000

  • Andersen JS, Bedaux JJM, Kooijman SALM and Holst H (2000). The influence of design parameters on statistical inference in non-linear estimation; a simulation study based on survival data and hazard modelling. J Agric Biol Environ Stat 5:323-341 http://www.jstor.org/stable/1400457 key_sur
2001

  • Péry ARR, Bedaux JJM, Zonneveld C and Kooijman SALM (2001). Analysis of bioassays with time-varying concentrations. Water Res 35:3825-3832 http://dx.doi.org/10.1016/S0043-1354(01)00106-3 key_sur, key_tim
  • Widianarko B, Kuntoro FXS, Van Gestel CAM and Van Straalen NM (2001). Toxicokinetics and toxicity of zinc under time-varying exposure in the guppy (Poecilia reticulata). Environ Toxicol Chem 20(4):763-768 http://dx.doi.org/10.1002/etc.5620200410 key_sur, key_tim
2002

  • Bonnomet V, Duboudin C, Magaud H, Thybaud E, Vindimian E and Beauzamy B (2002). Modeling explicitly and mechanistically median lethal concentration as a function of time for risk assessment. Environ Toxicol Chem 21(10):2252-2259 http://dx.doi.org/10.1002/etc.5620211032 key_sur
  • Péry ARR, Flammarion P, Vollat B, Bedaux JJM, Kooijman SALM and Garric J (2002). Using a biology-based model (DEBtox) to analyse bioassays in ecotoxicology: Opportunities & recommendations. Environ Toxicol Chem 21:459-465 http://dx.doi.org/10.1002/etc.5620210232 key_sur, key_gen
2003

  • Heugens EHW, Jager T, Creyghton R, Kraak MHS, Hendriks AJ, Van Straalen NM and Admiraal W (2003). Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environ Sci Technol 37(10):2145-2151 http://dx.doi.org/10.1021/es0264347 key_surv
  • Péry ARR, Ducrot V, Mons R, Miege C, Gahou J, Gorini D and Garric J (2003). Survival tests with Chironomus riparius exposed to spiked sediments can profit from DEBtox model. Wat Res 37(11):2691-2699 http://dx.doi.org/10.1016/S0043-1354(03)00074-5 key_surv
2005

2007

  • Ashauer R, Boxall ABA and Brown CD (2007). New ecotoxicological model to simulate survival of aquatic invertebrates after exposure to fluctuating and sequential pulses of pesticides. Environ Sci Technol 41(4):1480-1486 http://dx.doi.org/10.1021/es061727b key_sur, key_tim
  • Ashauer R, Boxall ABA and Brown CD (2007). Modeling combined effects of pulsed exposure to carbaryl and chlorpyrifos on Gammarus pulex. Environ Sci Technol 41(15):5535-5541 http://dx.doi.org/10.1021/es070283w key_sur, key_mix, key_tim
  • Ashauer R, Boxall ABA and Brown CD (2007). Simulating toxicity of carbaryl to Gammarus pulex after sequential pulsed exposure. Environ Sci Technol 41(15):5528-5534 http://dx.doi.org/10.1021/es062977v key_sur, key_tim
  • Baas J, Van Houte BPP, Van Gestel CAM and Kooijman SALM (2007). Modelling the effects of binary mixtures on survival in time. Environ Toxicol Chem 26:1320-1327 http://dx.doi.org/10.1897/06-437R.1 key_sur, key_mix
  • Kooijman SALM, Baas J, Bontje D, Broerse M, Jager T, Van Gestel CAM and Van Hattum B (2007). Scaling relationships based on partition coefficients and body sizes have similarities and interactions. SAR QSAR Environ Res 18:315-330 http://dx.doi.org/10.1080/10629360701304196 key_sur
2008

  • Ashauer R and Brown CD (2008). Toxicodynamic assumptions in ecotoxicological hazard models. Environ Toxicol Chem 27(8):1817-1821 http://dx.doi.org/10.1897/07-642.1 key_sur
  • Penttinen OP, Kilpi-Koski J, Jokela M, Toivainen K and Vaisanen A (2008). Importance of dose metrics for lethal and sublethal sediment metal toxicity in the oligochaete worm Lumbriculus variegates. J Soil Sed 8(1):59-66 http://dx.doi.org/10.1065/jss2007.12.267 key_sur
  • Smit, MGD, Ebbens E, Jak RG, Huijbregts MAJ (2008). Time and concentration dependency in the potentially affected fraction of species: the case of hydrogen peroxide treatment of ballast water. Environ Toxicol Chem 27(3):746-753 http://dx.doi.org/10.1897/07-343.1 key_sur
2009

  • Baas J, Jager T and Kooijman SALM (2009). Estimation of no effect concentrations from exposure experiments when values scatter among individuals. Ecol Mod 220:411-418 http://dx.doi.org/10.1016/j.ecolmodel.2008.10.008 key_sur
  • Baas J, Jager T and Kooijman SALM (2009). A model to analyze effects of complex mixtures on survival. Ecotox Environ Saf 72:669-676 http://dx.doi.org/10.1016/j.ecoenv.2008.09.003 key_sur, key_mix
  • Baas J, Willems J, Jager T, Kraak MHS, Vandenbrouck T and Kooijman SALM (2009). Prediction of daphnid survival after in situ exposure to complex mixtures. Environ Sci Technol 43:6064-6069 http://dx.doi.org/10.1021/es901083v key_sur, key_mix
  • Huang S, Jia Y and Wang SSY (2009). Two-dimensional numerical and eco-toxicological modeling of chemical spills. Front Environ Sci Engin China 3(2):178–185 http://dx.doi.org/10.1007/s11783-009-0020-9 key_sur
  • Jager T and Kooijman SALM (2009). A biology-based approach for quantitative structure-activity relationships (QSARs) in ecotoxicity. Ecotoxicology 18:187-196 http://dx.doi.org/10.1007/s10646-008-0271-4 key_sur (open access).
2010

  • Ashauer R (2010). Toxicokinetic-toxicodynamic modelling in an individual based context-Consequences of parameter variability. Ecol Mod 221(9):1325-1328 http://dx.doi.org/10.1016/j.ecolmodel.2010.01.015 key_sur
  • Ashauer R, Hintermeister A, Caravatti I, Kretschmann A and Escher BI (2010). Toxicokinetic and toxicodynamic modeling explains carry-over toxicity from exposure to diazinon by slow organism recovery. Environ Sci Technol 44(10):3963-3971 http://dx.doi.org/10.1021/es903478b key_sur, key_tim
  • Baas J and Kooijman B (2010). Chemical contamination and the ecological quality of surface water. Envir Pollut 158:1603-1607 http://dx.doi.org/10.1016/j.envpol.2009.12.015 key_sur, key_mix
  • Baas J, Stefanowicz AM, Klimek B, Laskowski R and Kooijman SALM (2010). Model-based experimental design for assessing effects of mixtures of chemicals. Environ Pollut 158:115-120 http://dx.doi.org/10.1016/j.envpol.2009.07.030 key_sur, key_mix
  • Ducrot V, Péry ARR and Lagadic L (2010). Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis. Phil Trans R Soc B 365:3485-3494 http://dx.doi.org/10.1098/rstb.2010.004 key sur
  • Péry ARR, Troise A, Tissot S and Vincent JM (2010). Comparison of models to analyze mortality data and derive concentration-time response relationship of inhaled chemicals. Regul Toxicol Pharmacol 57(1):124-128 http://dx.doi.org/10.1016/j.yrtph.2010.02.005 key_sur
2011

  • Jager T, Albert C, Preuss TG and Ashauer R (2011). General Unified Threshold model of Survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529-2540 http://dx.doi.org/10.1021/es103092a key_sur, key_gen accepted version and SI.
  • Kretschmann A, Ashauer R, Hitzfeld K, Spaak P, Hollender J and Escher BI (2011). Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna. Environ Sci Technol 45(11):4980-4987 http://dx.doi.org/10.1021/es1042386 key_sur
  • Olsen, GH, Smit, MGD, Carroll, J, Jæger I, Smith T and Camus L (2011). Arctic versus temperate comparison of risk assessment metrics for 2-methyl-naphthalene. Mar Envir Res 72(4):179-187 http://dx.doi.org/10.1016/j.marenvres.2011.08.003 key_sur
  • Wolińska L, Brzuzan P, Woźny M, Góra M, Łuczyński MK, Podlasz P, Kolwicz S and Piasecka A (2011). Preliminary study on adverse effects of phenanthrene and its methyl and phenyl derivatives in larval zebrafish, Danio rerio. Environ Biotechnol 7(1):26-33 http://zfin.org/ZDB-PUB-130131-2 key_sur
2012

  • Albert C, Ashauer R, Künsch HR and Reichert P (2012). Bayesian experimental design for a toxicokinetic-toxicodynamic model. J Stat Plan Inf 142(1):263-275 http://dx.doi.org/10.1016/j.jspi.2011.07.014 key_gen, key_tim
  • Beaudouin R, Zeman FA, Péry ARR (2012). Individual sensitivity distribution evaluation from survival data using a mechanistic model: implications for ecotoxicological risk assessment. Chemosphere 89(1):83–88 http://dx.doi.org/10.1016/j.chemosphere.2012.04.021 key_sur
  • Kretschmann A, Ashauer R, Hollender J and Escher BI (2012). Toxicokinetic and toxicodynamic model for diazinon toxicity - mechanistic explanation of differences in the sensitivity of Daphnia magna and Gammarus pulex. Environ Toxicol Chem 31(9):2014–2022 http://dx.doi.org/10.1002/etc.1905 key_sur, key_tim
  • Nyman AM, Schirmer K and Ashauer R (2012). Toxicokinetic-toxicodynamic modelling of survival of Gammarus pulex in multiple pulse exposures to propiconazole: model assumptions, calibration data requirements and predictive power. Ecotoxicology 21(7):1828-1840 http://dx.doi.org/10.1007/s10646-012-0917-0 key_sur, key_tim
  • Tan QG and Wang WX (2012). Two-compartment toxicokinetic–toxicodynamic model to predict metal toxicity in Daphnia magna. Environ Sci Technol 46:9709-9715 http://dx.doi.org/10.1021/es301987u key_sur
  • Van Ommen Kloeke AEE, Jager T, Van Gestel CAM, Ellers J, Van Pomeren M, Krommenhoek T, Styrishave B, Hansen M and Roelofs D (2012). Time-related survival effects of two gluconasturtiin hydrolysis products on the terrestrial isopod Porcellio scaber. Chemosphere 89(9):1084–1090 http://dx.doi.org/10.1016/j.chemosphere.2012.05.074 key_sur, key_tim
  • Xu X, Dixon PM, Zhao Y and Newman MC (2012). Diagnostics to assess toxicokinetic–toxicodynamic models with interval-censored data. Environmetrics 24:332-341 http://dx.doi.org/10.1002/env.2216 key_sur, key_tim
2013

  • Ashauer R, Thorbek P, Warinton JS, Wheeler JR and Maund S (2013). A method to predict and understand fish survival under dynamic chemical stress using standard ecotoxicity data. Environ Toxicol Chem 32(4):954-965 http://dx.doi.org/10.1002/etc.2144 key_sur, key_tim
  • Gergs A, Zenker A, Grimm V and Preuss TG (2013). Chemical and natural stressors combined: from cryptic effects to population extinction. Scientific Reports 3:2036 http://dx.doi.org/10.1038/srep02036 key_sur, key_pop
  • Hansen BH, Altin D, Øverjordet IB, Jager T and Nordtug T (2013). Acute exposure of water soluble fractions of marine diesel on Arctic Calanus glacialis and boreal Calanus finmarchicus: Effects on survival and biomarker response. Sci Tot Environ 449:276–284 http://dx.doi.org/10.1016/j.scitotenv.2013.01.020 key_sur
  • Jager T and Hansen BH (2013). Linking survival and biomarker responses over time. Environ Toxicol Chem 32(8):1842-1845 http://dx.doi.org/10.1002/etc.2258 key_sur, key_mol accepted version.
  • Kulkarni D, Daniels B and Preuss TG (2013). Life-stage-dependent sensitivity of the cyclopoid copepod Mesocyclops leuckarti to triphenyltin. Chemosphere 92:1145-1153 http://dx.doi.org/10.1016/j.chemosphere.2013.01.076 key_sur
  • Nyman AM, Hintermeister A, Schirmer K and Ashauer R (2013). The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior. PLOS ONE 8(5): e62472 http://dx.doi.org/10.1371/journal.pone.0062472 key_sur, key_tim
2014

  • Ardestani MM, Oduber F and Van Gestel CAM (2014). A combined toxicokinetics and toxicodynamics approach to assess the effect of pore water composition on cadmium bioavailability to Folsomia candida. Environ Toxicol Chem 33(7):1570–1577 http://dx.doi.org/10.1002/etc.2585  key_sur
  • Baveco JM, Norman S, Roessink I, Galic N and Van den Brink PJ (2014). Comparing population recovery after insecticide exposure for four aquatic invertebrate species using models of different complexity. Environ Toxicol Chem 33(7):1517-1528 http://dx.doi.org/10.1002/etc.2605 key_sur
  • Gabsi F, Hammers-Wirtz M, Grimm V, Schäffer A and Preuss TG (2014). Coupling different mechanistic effect models for capturing individual-and population-level effects of chemicals: Lessons from a case where standard risk assessment failed. Ecol Mod 280:18–29 http://dx.doi.org/10.1016/j.ecolmodel.2013.06.018 key_sur, key_pop
  • Galiç N, Ashauer R, Baveco H, Nyman AM, Barsi A, Thorbek P, Bruns E and Van den Brink PJ (2014). Modeling the contribution of toxicokinetic and toxicodynamic processes to the recovery of Gammarus pulex populations after exposure to pesticides. Environ Toxicol Chem 33(7):1476–1488 http://dx.doi.org/10.1002/etc.2481 key_sur
  • Hansen BH, Altin D, Bonaunet K and Øverjordet IB (2014) Acute toxicity of eight oil spill response chemicals to temperate, boreal, and arctic species. J Toxicol Environ Health A 77(9-11):495-505 http://dx.doi.org/10.1080/15287394.2014.886544 key_sur
  • Jager T (2014). Reconsidering sufficient and optimal test design in acute toxicity testing. Ecotoxicology 23(1):38-44 http://dx.doi.org/10.1007/s10646-013-1149-7 key_sur, key_gen accepted version and SI.
  • Klok C, Nordtug T and Tamis JE (2014). Estimating the impact of petroleum substances on survival in early life stages of cod (Gadus morhua) using the Dynamic Energy Budget theory. Mar Environ Res 101:60-68 http://dx.doi.org/10.1016/j.marenvres.2014.09.002 key_sur, key_tim
2015

  • Ashauer R, O’Connor I, Hintermeister A and Escher BI (2015), Death dilemma and organism recovery in ecotoxicology. Environ Sci Technol 49(16):10136–10146 http://dx.doi.org/10.1021/acs.est.5b03079 key_sur, key_gen
  • Baas J and Kooijman SALM (2015). Sensitivity of animals to chemical compounds links to metabolic rate. Ecotoxicology 24(3):657-663 http://dx.doi.org/10.1007/s10646-014-1413-5 key_gen, key_sur
  • Baas J, Spurgeon D and Broerse M (2015). A simple mechanistic model to interpret the effects of narcotics. SAR and QSAR in Environmental Research 26(3):165–180 http://dx.doi.org/10.1080/1062936X.2015.1018940 key_gen, key_sur
  • Candy SG, Sfiligoj BJ, King CK and Mondon JA (2015). Modelling grouped survival times in toxicological studies using Generalized Additive Models. Environ Ecol Stat 22:465–491 http://dx.doi.org//10.1007/s10651-014-0306-3 key_sur
  • Gao Y, Feng J, and Zhu L (2015). Prediction of acute toxicity of cadmium and lead to zebrafish larvae by using a refined toxicokinetic-toxicodynamic model. Aquat Toxicol 169:37-45 http://dx.doi.org/10.1016/j.aquatox.2015.09.005 key_sur
  • Gergs A, Kulkarni D and Preuss TG (2015). Body size-dependent toxicokinetics and toxicodynamics could explain intra- and interspecies variability in sensitivity. Environ Pollut 206:449–455 http://dx.doi.org/10.1016/j.envpol.2015.07.045 key_sur, key_gen
  • He E, Baas J and Van Gestel CAM (2015). Interaction between nickel and cobalt toxicity in Enchytraeus crypticus is due to competitive uptake. Environ Toxicol Chem 34 (2):328–337 http://dx.doi.org/10.1002/etc.2802 key_sur, key_mix
  • Kon Kam King G, Delignette-Muller ML, Kefford BJ, Piscart C and Charles S (2015). Constructing time-resolved species sensitivity distributions using a hierarchical toxico-dynamic model. Environ Sci Technol 49:12465−12473 http://dx.doi.org/10.1021/acs.est.5b02142 key_sure
  • Stadnicka-Michalak J, Schirmer K and Ashauer R (2015). Toxicology across scales: Cell population growth in vitro predicts reduced fish growth. Sci Adv 1, e1500302 http://dx.doi.org/10.1126/sciadv.1500302 key_sur

2016


  • Albert C, Vogel S and Ashauer R (2016). Computationally efficient implementation of a novel algorithm for the General Unified Threshold model of Survival (GUTS). PLoS Comput Biol 12(6):e1004978. http://dx.doi.org/10.1371/journal.pcbi.1004978 key_sur
  • Ashauer R, Albert C, Augustine S, Cedergreen N, Charles S, Ducrot V, Focks A, Gabsi F, Gergs A, Goussen B, Jager T, Kramer NI, Nyman AM, Poulsen V, Reichenberger S, Schäfer RB, Van den Brink PJ, Veltman K, Vogel S, Zimmer EI and Preuss TG (2016). Modelling survival: exposure pattern, species sensitivity and uncertainty. Sci Rep 6:29178 http://dx.doi.org/10.1038/srep29178 open access. key_gen, key_sur.
  • Baas J, Vijver M, Rambohul J, Dunbar M, Van ‘t Zelfde M, Svendsen C and Spurgeon D (2016). Comparison and evaluation of pesticide monitoring programs using a process-based mixture model. Environ Toxicol Chem http://dx.doi.org/10.1002/etc.3492 key_mix, key_sur
  • Dohmen P, Preuss TG, Hamer M, Galic N, Strauss T, Van den Brink PJ, De Laender F and Bopp S (2016). Population-level effects and recovery of aquatic invertebrates after multiple applications of an insecticide. IEAM 12(1):67-81 http://dx.doi.org/10.1002/ieam.1676 key_sur, key_pop
  • Ducrot V, Ashauer R, Bednarska AJ, Hinarejos S, Thorbek P and Weyman G (2016). Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment. IEAM 12(1):32-45 http://dx.doi.org/10.1002/ieam.1641 key_gen, key_sur
  • Gao Y, Feng J, Han F, and Zhu L (2016). Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae. Environ Pollut 213:16-29 http://dx.doi.org/10.1016/j.envpol.2016.01.073 key_sur
  • Gergs A, Gabsi F, Zenker A and Preus RG (2016). Demographic toxicokinetic−toxicodynamic modeling of lethal effects. Environ Sci Technol 50(11):6017-6024 http://dx.doi.org/10.1021/acs.est.6b01113 key_sur
  • Hesketh H, Lahive E, Horton AA , Robinson AG, Svendsen C, Rortais A, Dorne JL, Baas J, Spurgeon DJ and Heard MS (2016). Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling. Scientific Reports 6: 37655. http://dx.doi.org/10.1038/srep37655 key_sur
  • Jager T, Altin D, Miljeteig C and Hansen BH (2016). Stage-dependent and sex-dependent sensitivity to water soluble fractions of fresh and weathered oil in the marine copepod Calanus finmarchicus. Environ Toxicol Chem 35(3):728-735 http://dx.doi.org/10.1002/etc.3237 key_sur, key_mix accepted version and SI.

2017


  • Ashauer A, O'Connor I, and Escher BI (2017). Toxic mixtures in time – the sequence makes the poison. Environ Sci Technol 51:3084-3092 http://dx.doi.org/10.1021/acs.est.6b06163 key_sur, key_mix
  • Cedergreen N, Dalhoff K, Li D, Gottardi M and Kretschmann AC (2017). Can toxicokinetic and toxicodynamic modeling be used to understand and predict synergistic interactions between chemicals? Environ Sci Technol 51:14379−14389. http://dx.doi.org/10.1021/acs.est.7b02723 key_sur, key_mix
  • Chen WQ, Wang WX and Tan QG (2017). Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model. Environ Pollut 222:323-330 https://doi.org/10.1016/j.envpol.2016.12.033 key_sur 
  • Delignette-Muller ML, Ruiz P and Veber P (2017). Robust fit of toxicokinetic−toxicodynamic models using prior knowledge contained in the design of survival toxicity tests. Environ Sci Technol 51(7):4038-4045 http://dx.doi.org/10.1021/acs.est.6b05326 key_sur See also comment by T. Jager and response of the authors.
  • Gao Y, Feng J, Wang C, and Zhu L (2017). Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae. Ecotox Environ Saf 138:146–153 http://dx.doi.org/10.1016/j.ecoenv.2016.12.028 key_sur key_mix
  • Gao Y, Feng J, and Zhu L (2017). Toxicodynamic modeling of zebrafish larvae to metals using stochastic death and individual tolerance models: comparisons of model assumptions, parameter sensitivity and predictive performance. Ecotoxicology 26:295-307 http://dx.doi.org/10.1007/s10646-017-1763-x key_sur key_mix
  • Heard MS, Baas J, Dorne JL , Lahive E, Robinson AG, Rortais A, Spurgeon DJ, Svendsen C and Hesketh H (2017). Comparative toxicity of pesticides and environmental contaminants in bees: are honey bees a useful proxy for wild bee species? Sci Tot Environ 578:357-365. http://dx.doi.org/10.1016/j.scitotenv.2016.10.180 key_sur
  • Henry Y, Piscart C, Charles S and Colinet H (2017). Combined effect of temperature and ammonia on molecular response and survival of the freshwater crustacean Gammarus pulex. Ecotox Environ Saf 137:42–48. http://dx.doi.org/10.1016/j.ecoenv.2016.11.011 key_sur
  • Jager T, Øverjordet IB, Nepstad R and Hansen BH (2017). Dynamic links between lipid storage, toxicokinetics and mortality in a marine copepod exposed to dimethylnaphthalene. Environ Sci Technol. 51(13):7707-7713. http://dx.doi.org/10.1021/acs.est.7b02212 key_sur accepted version and SI.
  • Robinson A, Hesketh H, Lahive E, Horton AA, Svendsen C, Rortais A, Dorne JL, Baas J, Heard MS and Spurgeon DJ (2017). Comparing bee species responses to chemical mixtures: common response patterns? PLoSONE 12(6):e0176289 https://doi.org/10.1371/journal.pone.0176289 key_sur, key_mix

2018


  • Baudrot V and S Charles (2018). Recommendations to address uncertainties in environmental risk assessment using toxicokinetics-toxicodynamics models. bioRxiv: 356469. https://doi.org/10.1101/356469 ver. 3 peer-reviewed and recommended by PCI Ecol. key_sur
  • Baudrot V, Preux S, Ducrot V, Pave A and Charles S (2018). New insights to compare and choose TKTD models for survival based on an interlaboratory study for Lymnaea stagnalis exposed to Cd. Environ Sci Technol 52(3):1582–1590. https://dx.doi.org/10.1021/acs.est.7b05464 key_sur
  • Baudrot V, Veber P, Gence G and Charles S (2018). Fit reduced GUTS models online: from theory to practice. IEAM 14(5):625-630. https://doi.org/10.1002/ieam.4061 key_gen
  • Diouf A, BI Camara, D Ngom, H Toumi, V Felten, JF Masfaraud and JF Férard (2018). Bayesian inference of a dynamical model evaluating deltamethrin effect on Daphnia survival. Biomath 7, 1812177, http://dx.doi.org/10.11145/j.biomath.2018.12.177 key_surv
  • EFSA (2018). Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA journal 16(8): 5377. https://doi.org/10.2903/j.efsa.2018.5377 key_surv, key_tim, key_gen
  • Feng J, Gao Y, Chen M, Xu X, Huang M, Yang T, Chen N and Zhu L (2018). Predicting cadmium and lead toxicities in zebrafish (Danio rerio) larvae by using a toxicokinetic–toxicodynamic model that considers the effects of cations. Sci Total Environ 625:1584–1595. https://doi.org/10.1016/j.scitotenv.2018.01.068 key_surv
  • Focks A, Belgers D, Boerwinkel MC, Buijse L, Roessink I and Van den Brink PJ (2018). Calibration and validation of toxicokinetic-toxicodynamic models for three neonicotinoids and some aquatic macroinvertebrates. Ecotoxicology 27(7):992-1007. https://doi.org/10.1007/s10646-018-1940-6 key_surv, key_tim
  • Horton AA, MG Vijver, E Lahive, DJ Spurgeon, C Svendsen, R Heutink PM van Bodegom and J Baas (2018). Acute toxicity of organic pesticides to Daphnia magna is unchanged by co-exposure to polystyrene microplastics. Ecotox Environ Saf 166:26-34. https://dx.doi.org/10.1016/j.ecoenv.2018.09.052 key_surv
  • Jaikumar G, J Baas, NR Brun, MG Vijver and T Bosker (2018). Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ Poll 239:733-740 https://doi.org/10.1016/j.envpol.2018.04.069 key_surv
  • Jager T and Ashauer R (2018). How to evaluate the quality of toxicokinetic-toxicodynamic models in the context of environmental risk assessment. IEAM 14(5):604-614. https://doi.org/10.1002/ieam.2026 key_gen (general paper on TKTD models, using GUTS as example) accepted version
  • Thursby G, Sappington K and Etterson M (2018). Coupling toxicokinetic–toxicodynamic and population models for assessing aquatic ecological risks to time-varying pesticide exposures.  Environ Toxicol Chem 37(10):2633-2644. https://doi.org/10.1002/etc.4224 key_pop

2019


  • Baudrot V and S Charles (2018). Recommendations to address uncertainties in environmental risk assessment using toxicokinetics-toxicodynamics models. Sci Rep 9:11432. https://doi.org/10.1038/s41598-019-47698-0 key_surv, key_gen
  • Bechmann RK, M Arnberg, A Gomiero, S Westerlund, E Lyng, M Berry, T Agustsson, T Jager, L Burridge (2019). Gill damage and delayed mortality of Northern shrimp (Pandalus borealis) after short time exposure to anti-parasitic veterinary medicine containing hydrogen peroxide. Ecotox Environ Saf 180:473-482. https://doi.org/10.1016/j.ecoenv.2019.05.045 key_surv, key_tim
  • Gabsi F, A Solga, E Bruns, C Leake and TG Preuss (2019). Short-term to long-term extrapolation of lethal effects of an herbicide on the marine mysid shrimp Americamysis bahia by use of the General Unified Threshold model of Survival (GUTS). IEAM 15(1):29-39. https://dx.doi.org/10.1002/ieam.4092 key_surv, key_tim
  • Gergs A, KJ Rakel, D Liesy, A Zenker and S Classen (2019). Mechanistic effect modeling approach for the extrapolation of species sensitivity. Environ Sci Technol 53(16):9818-9825. http://dx.doi.org/10.1021/acs.est.9b01690 key_sur
  • He A, X Liu, L Qu, Y Gao, J Feng and L Zhu (2019). Comparison of the general threshold model of survival and dose–response models in simulating the acute toxicity of metals to Danio rerio. Environ Toxicol Chem 38(10):2169-2177. https://doi.org/10.1002/etc.4534 key_surv
  • Sardi, AE, S Augustine, GH Olsen and L Camus (2019). Exploring inter-species sensitivity to a model hydrocarbon, 2-Methylnaphtalene, using a process-based model. Environ Sci Poll Res 26(11):11355-11370. https://doi.org/10.1007/s11356-019-04423-8 key_sur
  • Tan QG, S Lu, R Chen and J Peng (2019). Making acute tests more ecologically relevant: cadmium bioaccumulation and toxicity in an estuarine clam under various salinities modeled in a toxicokinetic–toxicodynamic framework. Environ Sci Technol 53(5):2873-2880. http://dx.doi.org/10.1021/acs.est.8b07095 key_sur
    DOI: 10.1021/acs.est.8b07095
  • Van den Brink PJ, DM Buijert-de Gelder, TCM Brock, I Roessink and A Focks (2019). Exposure pattern-specific species sensitivity distributions for the ecological risk assessments of insecticides. Ecotox Environ Saf 180:252-258. https://doi.org/10.1016/j.ecoenv.2019.05.022 key_sur, key_tim
  • Vighi M, A Barsi, A Focks and F Grisoni (2019). Predictive models in ecotoxicology: bridging the gap between scientific progress and regulatory applicability - remarks and research needs. IEAM 15(3):345-351. https://dx.doi.org/10.1002/ieam.4136 key_gen (review)

2020


  • Agatz, A, R Ashauer, P Sweeney and CD Brown (2020). A knowledge-based approach to designing control strategies for agricultural pests. Agricultural Systems 183:102865. https://doi-org.vu-nl.idm.oclc.org/10.1016/j.agsy.2020.102865 key_sur, key_tim
  • MJ Arlos, A Focks, J Hollender and C Stamm (2020). Improving risk assessment by predicting the survival of field gammarids exposed to dynamic pesticide mixtures. Environ Sci Technol 54(19):12383-12392. https://dx.doi.org/10.1021/acs.est.0c03939 key_sur, key_tim
  • Ashauer R, R Kuhl, E Zimmer and M Junghans (2020), Effect modelling quantifies the difference between the toxicity of average pesticide concentrations and time‐variable exposures from water quality monitoring. Environ Toxicol Chem 39(11):2158-2168. https://doi.org/10.1002/etc.4838 key_sur, key_tim
  • Dalhoff K, AM Bruun Hansen, J Jessen Rasmussen, A Focks, B W Strobel and N Cedergreen (2020). Linking morphology, toxicokinetic and toxicodynamic traits of aquatic invertebrates to pyrethroid sensitivity. Environ Sci Technol 54(9) 5687–5699. https://doi.org/10.1021/acs.est.0c00189 key_sur
  • Gao Y, Z Xie, M Feng, J Feng, L Zhu (2020). A biological characteristic extrapolation of compound toxicity for different developmental stage species with toxicokinetic-toxicodynamic model. Ecotox Environ Saf 203:111043. https://doi.org/10.1016/j.ecoenv.2020.111043 key_sur
  • Pedersen KE, NN Pedersen, NV Meyling, BL Fredensborg and N Cedergreen (2020). Differences in life stage sensitivity of the beetle Tenebrio molitor towards a pyrethroid insecticide explained by stage-specific variations in uptake, elimination and activity of detoxifying enzymes. Pest Biochem Physiol 162:113-121. https://doi.org/10.1016/j.pestbp.2019.09.009  key_sur
  • Wu F, Y Gao, Z Zuo, J Feng, Z Yan and L Zhu (2020). Different decreasing rates of chemical threshold concentrations can be explained by their toxicokinetic and toxicodynamic characteristics. Sci Tot Environ 708, 135234. https://doi.org/10.1016/j.scitotenv.2019.135234 key_sur
  • Zhong G, S Lu, R Chen, N Chen and QG Tan (2020). Predicting risks of cadmium toxicity in salinity-fluctuating estuarine waters using the toxicokinetic–toxicodynamic model. Environ Sci Technol 54(21):13899-13907. https://dx.doi.org/10.1021/acs.est.0c06644 key_sur

2021


  • Bart, S, T Jager, A Robinson, E Lahive, D Spurgeon, R Ashauer (2021). Predicting mixture effects over time with toxicokinetic-toxicodynamic models (GUTS): assumptions, experimental testing & predictive power. Environ Sci Technol 55(4):2430-2439. https://dx.doi.org/10.1021/acs.est.0c05282 key_sur, key_mix (Open Access).
  • Baudrot V, S Charles (2021). TKTDsimulation.jl and tktdjl2r: innovative packages for High Performance Computing of survival predictions in support of environmental risk assessment under time-variable scenarios. Preprint deposited at bioRxiv 2021.02.18.431769.
  • Baudrot V, A Lang, C Stefanescu, S Soubeyrand and A Messéan (2021). Extension of the spatially‐ and temporally‐explicit “briskaR‐NTL” model to assess potential adverse effects of Bt‐maize pollen on non‐target Lepidoptera at landscape level. EFSA supporting publication 18(4):EN‐6443. 137 pp. 10.2903/sp.efsa.2021.EN-6443 key_sur
  • Baudrot V, E Walker, A Lang, C Stefanescu, JF Rey, S Soubeyrand and A Messéan (2021). When the average hides the risk of Bt-corn pollen on non-target Lepidoptera: application to Aglais io in Catalonia. Ecotox Environ Saf 207:111215. https://doi.org/10.1016/j.ecoenv.2020.111215 key_sur, key_tim
  • Bhattacharya, R, A Chatterjee, S Chatterjee, and NC Saha (2021). Acute toxicity and impact of sublethal exposure to commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate on oxidative stress enzymes in oligochaete worm Branchiura sowerbyi (Beddard, 1892). Aquaculture Research 52(12):6367-6379. https://doi.org/10.1111/are.15501 key_sur
  • Brock T, M Arena, N Cedergreen, S Charles, S Duquesne, A Ippolito, M Klein, M Reed, I Teodorovic, PJ van den Brink and A Focks (2021). Application of GUTS models for regulatory aquatic pesticide risk assessment illustrated with an example for the insecticide chlorpyrifos. Integr Environ Assess Manag 17(1):243-258. https://doi.org/10.1002/ieam.4327 key_gen
  • Cedergreen N, G Bellisai, L Herrero-Nogareda, E Boesen and Kristoffer Dalhoff (2021). Using TKTD Models in combination with in vivo enzyme inhibition assays to investigate the mechanisms behind synergistic interactions across two species. Environ Sci & Technol 55(20):13990-13999. https://doi.org/10.1021/acs.est.1c02222 key_sur, key_mix 
  • Charles S, V Baudrot (2021). morse: an R-package in support of environmental risk assessment. bioRxiv 2021.04.07.438826 https://doi.org/10.1101/2021.04.07.438826 key_sur
  • Charles S, A Ratier, V Baudrot, G Multari, A Siberchicot, D Wu and C Lopes (2021). Taking full advantage of modelling to better assess environmental risk due to xenobiotics. bioRxiv 2021.03.24.436474. https://doi.org/10.1101/2021.03.24.436474 key_sur, key_tim
  • Gao Y, Z Xie, J Zhu, H Cao, J Tan, J Feng and L Zhu (2021). Understanding the effects of metal pre-exposure on the sensitivity of zebrafish larvae to metal toxicity: a toxicokinetics–toxicodynamics approach. Ecotox Environ Saf 209:111788. https://doi.org/10.1016/j.ecoenv.2020.111788 key_sur
  • Gergs, A, J Hager, E Bruns and TG Preuss (2001), Disentangling mechanisms behind chronic lethality through toxicokinetic‐toxicodynamic modelling. Environ Toxicol Chem. 40(6):1706-1712. https://doi.org/10.1002/etc.5027 key_sur, key_tim
  • Griffiths MR, BW Strobel, JR Hama and N Cedergreen (2021). Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ Sci Eur 33:10. https://doi.org/10.1186/s12302-020-00452-0 key_sur
  • Huang A, NW van den Brink, L Buijse, I Roessink, PJ van den Brink (2021). The toxicity and toxicokinetics of imidacloprid and a bioactive metabolite to two aquatic arthropod species. Aquatic Toxicology 235:105837. https://doi.org/10.1016/j.aquatox.2021.105837 key_sur
  • Jager, T (2021). Robust likelihood-based approach for automated optimization and uncertainty analysis of toxicokinetic-toxicodynamic models. Integr Environ Assess Manag 17(2):388-397. https://doi.org/10.1002/ieam.4333 key_gen accepted version and SI. (focusses on statistics, optimisation and uncertainty, using GUTS/openGUTS as case study)
  • Li H, Q Zhang, H Su, J You and WX Wang (2021). High tolerance and delayed responses of Daphnia magna to neonicotinoid insecticide imidacloprid: toxicokinetic and toxicodynamic modelling. Environ Sci Technol 55(1):458-467. https://dx.doi.org/10.1021/acs.est.0c05664 key_sur
  • Schmolke A, SM Bartell, C Roy D Desmarteau, A Moore, MJ Cox, NL Maples-Reynolds N Galic and R Brain (2021). Applying a hybrid modeling approach to evaluate potential pesticide effects and mitigation effectiveness for an endangered fish in simulated oxbow habitats. Environ Toxicol Chem 40(9):2615-2628. https://doi.org/10.1002/etc.5144. key_sur, key_tim
  • Yang L, J Feng, Y Gao and L Zhu (2021). Role of toxicokinetic and toxicodynamic parameters in explaining the sensitivity of zebrafish larvae to four metals. Environ Sci Technol 55(13):8965-8976. https://dx.doi.org/10.1021/acs.est.0c08725 key_sur

2022


  • Accolla C, A Schmolke, A Jacobson, C Roy, VE Forbes, R Brain and N Galic (2022). Modeling pesticide effects on multiple threatened and endangered cyprinid fish species: the role of life-history traits and ecology. Ecologies 3(2):183-205. https://doi.org/10.3390/ecologies3020015 key_pop (focus lies on DEB-TKTD in a population context, but openGUTS is used to calibrate the lethal-effects module)
  • Baas J, B Goussen, M Miles, TG Preuss and I Roessink (2022), BeeGUTS - a TKTD model for the interpretation and integration of acute and chronic honey bee tests. Environ Toxicol Chem. 41(9):2193-2201. https://doi.org/10.1002/etc.5423 key_sur, key_tim
  • Bart S, S Short, T Jager, EJ Eagles, A Robinson, C Badder, E Lahive, DJ Spurgeon and Roman Ashauer (2022). How to analyse and account for interactions in mixture toxicity with toxicokinetic-toxicodynamic models. Sci Total Environ 843:157048. https://doi.org/10.1016/j.scitotenv.2022.157048 (open access) key_sur, key_mix
  • Carroll J, HG Frøysa, F Vikebø, OJ Broch, D Howell, R Nepstad, S Augustine, GM Skeie, M Bockwoldt (2022). An annual profile of the impacts of simulated oil spills on the Northeast Arctic cod and haddock fisheries. Marine Pollut Bull 184:114207.
    https://doi.org/10.1016/j.marpolbul.2022.114207 key_sur, key_tim, key_mix, key_pop
  • Charles S, A Ratier, V Baudrot, G Multari, A Siberchicot, D Wu and C Lopes (2022). Taking full advantage of modelling to better assess environmental risk due to xenobiotics - the all-in-one facility MOSAIC. Environ Sci Pollut Res 29, 29244–29257. https://doi.org/10.1007/s11356-021-15042-7 key_sur
  • Gao Y, J Zhu and A He (2022). Effect of dissolved organic matter on the bioavailability and toxicity of cadmium in zebrafish larvae: determination based on toxicokinetic–toxicodynamic processes. Water Res 226:119272. https://doi.org/10.1016/j.watres.2022.119272 key_sur
  • Garai P, P Banerjee, P Sharma, P Mondal, NC Saha and C Faggio (2022). Nitrate-induced toxicity and potential attenuation of behavioural and stress biomarkers in Tubifex tubifex. Int J Environ Res 16:63. https://doi.org/10.1007/s41742-022-00443-4 key_sur
  • Ghosh S, N Chandra Saha, R Bhattacharya, S Medda and S Pal (2022). Acute toxicity and sublethal effects of lauryl alcohol ethoxylate on oxidative stress and antioxidant defense parameters in benthic oligochaete Worm, Tubifex tubifex. IJRASET 10(11):1090-1101. http://dx.doi.org/10.22214/ijraset.2022.47561 key_sur
  • Huang A, A Mangold-Döring, A Focks, C Zhang and PJ Van den Brink (2022). Comparing the acute and chronic toxicity of flupyradifurone and imidacloprid to non-target aquatic arthropod species. Ecotox Environ Saf 243:113977. https://doi.org/10.1016/j.ecoenv.2022.113977 open access. key_sur
  • Huang A, I Roessink, NW van den Brink and PJ van den Brink (2022). Size- and sex-related sensitivity differences of aquatic crustaceans to imidacloprid. Ecotox Environ Saf 242: 113917. https://doi.org/10.1016/j.ecoenv.2022.113917 open access. key_sur
  • Larras F, S Charles, A Chaumot, C Pelosi, M Le Gall, L Mamy and R Beaudouin (2022). A critical review of effect modeling for ecological risk assessment of plant protection products. Environ Sci Pollut Res 29:43448–43500. https://doi.org/10.1007/s11356-022-19111-3 key_gen
  • Mangold-Döring A, A Huang, EH van Nes, A Focks and PJ van den Brink (2022). Explicit consideration of temperature improves predictions of toxicokinetic–toxicodynamic models for flupyradifurone and imidacloprid in Gammarus pulex. Environ Sci Technol 56:15920-15929. http://dx.doi.org/10.1021/acs.est.2c04085 open access. key_sur
  • Medda S, NC Saha, R Bhattacharya, A Chatterjee, S Ghosh and S Pal (2022). Toxic effects of fungicide Sheathmar to worm, Tubifex tubifex. IJRASET 10(12):467-476. http://dx.doi.org/10.22214/ijraset.2022.47891 key_sur
  • Morgado RG, MD Pavlaki, AMVM Soares and S Loureiro (2022). Terrestrial organisms react differently to nano and non-nano Cu(OH)2 forms. Sci Total Environ 807(2):150679. https://doi.org/10.1016/j.scitotenv.2021.150679 key_sur
  • Morgado RG, A Pereira, DN Cardoso, M Prodana, C Malheiro, ARR Silva, A Vinhas, AMVM Soares and S Loureiro (2022). The effects of different temperatures in mercury toxicity to the terrestrial isopod Porcellionides pruinosus. Environ Pollut 314:120209. https://doi.org/10.1016/j.envpol.2022.120209 key_sur
  • Moulding BJG, G Kon Kam King, M Shenton, JP Bray, SJ Nichols and BJ Kefford (2022). Assessing the Relative Toxicity of Different Road Salts and Effect of Temperature on Salinity Toxicity: LCx Values versus No-Effect Concentration (NEC) Values. Arch Environ Contam Toxicol 82:281-293. https://doi.org/10.1007/s00244-021-00908-1 key_sur
  • Mukherjee D, S Saha, AV Chukwuka, B Ghosh, K Dhara, NC Saha, P Pal and C Faggio (2022). Antioxidant enzyme activity and pathophysiological responses in the freshwater walking catfish, Clarias batrachus Linn under sub-chronic and chronic exposures to the neonicotinoid, Thiamethoxam. Sci Total Environ 836:155716. https://doi.org/10.1016/j.scitotenv.2022.155716 key_sur
  • Nickisch D, BC Rall, A Singer and R Ashauer (2022). Fish species sensitivity ranking depends on pesticide exposure profiles. Environ Toxicol Chem 41(7):1732-1741. http://dx.doi.org/10.1002/etc.5348 key_sur, key_tim
  • Pollesch NL, KM Flynn, SM Kadlec, JA Swintek, S Raimondo and MA Etterson (2022). Developing integral projection models for ecotoxicology. Ecol Modell 464:109813. https://doi.org/10.1016/j.ecolmodel.2021.109813 key_sur, key_pop
  • Rakel K, D Becker, D Bussen, S Classen, T Preuss, T Strauss, A Zenkers and A Gergs (2022). Physiological dependency explains temperature differences in sensitivity towards chemical exposure. Arch Environ Contam Toxicol 83:349-360. https://doi.org/10.1007/s00244-022-00963-2 key_sur
  • Saha S, AV Chukwuka, D Mukherjee, K Dhara, NC Saha and C Faggio (2022). Behavioral and physiological toxicity thresholds of a freshwater vertebrate (Heteropneustes fossilis) and invertebrate (Branchiura sowerbyi), exposed to zinc oxide nanoparticles (nZnO): A General Unified Threshold model of Survival (GUTS). Comp Biochem Physiol Part C: Toxicol Pharmacol 262:109450. https://doi.org/10.1016/j.cbpc.2022.109450 key_sur

2023


  • Badder C, S Bart, A Robinson, H Hesketh, P Kille and DJ Spurgeon (2023). A novel Lepidoptera bioassay analysed using a reduced GUTS model. Ecotoxic Environ Saf 251:114504. https://doi.org/10.1016/j.ecoenv.2023.114504 open access. key_sur
  • Buddendorf WB, L Wipfler, W Beltman, H Baveco, MC Braakhekke, S Bub, A Gergs and T Schad (2023). Aquatic Risks at the landscape scale: A case study for pyrethroid use in pome fruit orchards in Belgium. Environ Sci & Technol 57(41):15608-15616. https://doi.org/10.1021/acs.est.3c02716 key_sur, key_tim
  • Cao X, ZX Yu, M Xie, K Pan and QG Tan (2023). Higher risks of copper toxicity in turbid waters: quantifying the bioavailability of particle-bound metals to set site-specific water quality criteria. Environ Sci Technol 57(2):1060-1070. https://doi.org/10.1021/acs.est.2c06447 key_sur
  • Mangold-Döring A, J Baas, PJ van den Brink, A Focks and EH van Nes (2023). Toxicokinetic–toxicodynamic model to assess thermal stress. Environ Sci Technol. 57(50):21029-21037. https://doi.org/10.1021/acs.est.3c05079 open access. key_sur (GUTS is adapted for thermal stress via damage)
  • Nepstad R, K Kotzakoulakis, BH Hansen, T Nordam and J Carroll (2023). An impact-based environmental risk assessment model toolbox for offshore produced water discharges. Marine Poll Bull 191:114979. https://doi.org/10.1016/j.marpolbul.2023.114979 key_sur
  • Plantade J, V Baudrot and S Charles (2023). hb or not hb - when and why accounting for background mortality in toxicological survival models matters? MethodsX 10:102114 https://doi.org/10.1016/j.mex.2023.102114. Preprint in bioRXiv https://doi.org/10.1101/2023.01.25.525496 key_sur, key_gen
  • Revel, M, K Medjoubi, S Charles, AS Hursthouse and S Heise (preprint). Mechanistic analysis of the sub chronic toxicity of La and Gd in Daphnia magna based on TKTD modelling and synchrotron X-ray fluorescence imaging. http://dx.doi.org/10.2139/ssrn.4570452 key_sur
  • Sengupta S., H.P. Leinaas, C.A.M. van Gestel, T. Jager, T. Rundberget, K. Borgå (2023). High sensitivity to dietary imidacloprid exposure in early life stages of Folsomia quadrioculata (Collembola) populations from contrasting climates. Appl Soil Ecol 187:104880. https://doi.org/10.1016/j.apsoil.2023.104880 open access. key_sur
  • Singer A, D Nickisch and A Gergs (2023). Joint survival modelling for multiple species exposed to toxicants. Sci Total Environ 857(2):159266. https://doi.org/10.1016/j.scitotenv.2022.159266 open access. key_sur, key_tim
  • ...

2024


  • Bauer B, A Singer, Z Gao, O Jakoby, J Witt, T Preuss and A Gergs (2024). A toxicokinetic-toxicodynamic modelling workflow assessing the quality of input mortality data. Environ Toxicol Chem 43(1):197-210. https://doi.org/10.1002/etc.5761 open access. key_sur, key_tim
  • Cai M, T Ma, H Que, B Shi, X Liu and Y Ke (2024). Investigating the impact of humic acid on copper accumulation in Sinonovacula constricta using a toxicokinetic–toxicodynamic model. Toxics 12:74. https://doi.org/10.3390/toxics12010074 open access. key_sur
  • Chakraborty D, S Saha, S Podder, NC Saha and C Faggio (2024). Generation of oxidative stress in freshwater oligochaete Tubifex tubifex due to exposure to aniline: time and concentration dependent toxicity assessment. Chemistry and Ecology https://doi.org/10.1080/02757540.2024.2304806 (not checked)
  • Jager, T (Acc.). Identifying and predicting delayed mortality with toxicokinetic-toxicodynamic models. Accepted in Environ Toxicol Chem. https://doi.org/10.1002/etc.5833. key_sur, key_tim
  • Revel M, K Medjoubi, S Charles, A Hursthouse and S Heise (2024). Mechanistic analysis of the sub chronic toxicity of La and Gd in Daphnia magna based on TKTD modelling and synchrotron X-ray fluorescence imaging. Chemosphere 2024:141509. https://doi.org/10.1016/j.chemosphere.2024.141509 open access. key_sur
  • Sowa G, AJ Bednarska and R Laskowski (2024). Mortality pattern of Poecilus cupreus beetles after repeated topical exposure to insecticide. Stochastic Death or Individual Tolerance? Environ Sci Technol 58(4):1854-1864. https://doi.org/10.1021/acs.est.3c08031 open access. key_sur
  • Yang L, J Zeng, N Gao, L Zhu, and J Feng (2024). Predicting the metal mixture toxicity with a toxicokinetic–toxicodynamic model considering the time-dependent adverse outcome pathways. Environ Sci Technol 58(8):3714-3725. https://doi.org/10.1021/acs.est.3c09857 (not checked)
  • ...






The DEBtox information site, www.debtox.info, since July 2011