Full list by year
1981
1994
- Bedaux JJM and Kooijman SALM (1994). Statistical
analysis of bioassays based on hazard modelling. Environ
Ecol Stat 1:303-314. http://dx.doi.org/10.1007/BF00469427
key_sur, key_gen
1996
1997
1998
- Gerritsen A, van der Hoeven N and Pielaat A (1998).
The acute toxicity of selected alkylphenols to young and
adult Daphnia magna. Ecotox Environ Saf
39(3):227-232 http://dx.doi.org/10.1006/eesa.1997.1578
key_sur
2000
- Andersen JS, Bedaux JJM, Kooijman SALM and Holst H
(2000). The influence of design parameters on
statistical inference in non-linear estimation; a
simulation study based on survival data and hazard
modelling. J Agric Biol Environ Stat 5:323-341 http://www.jstor.org/stable/1400457
key_sur
2001
- Péry ARR, Bedaux JJM, Zonneveld C and Kooijman SALM
(2001). Analysis of bioassays with time-varying
concentrations. Water Res 35:3825-3832 http://dx.doi.org/10.1016/S0043-1354(01)00106-3
key_sur, key_tim
- Widianarko B, Kuntoro FXS, Van Gestel CAM and Van
Straalen NM (2001). Toxicokinetics and toxicity of zinc
under time-varying exposure in the guppy (Poecilia
reticulata). Environ Toxicol Chem 20(4):763-768 http://dx.doi.org/10.1002/etc.5620200410
key_sur, key_tim
2002
- Bonnomet V, Duboudin C, Magaud H, Thybaud E, Vindimian
E and Beauzamy B (2002). Modeling explicitly and
mechanistically median lethal concentration as a
function of time for risk assessment. Environ Toxicol
Chem 21(10):2252-2259 http://dx.doi.org/10.1002/etc.5620211032
key_sur
- Péry ARR, Flammarion P, Vollat B, Bedaux JJM, Kooijman
SALM and Garric J (2002). Using a biology-based model
(DEBtox) to analyse bioassays in ecotoxicology:
Opportunities & recommendations. Environ Toxicol
Chem 21:459-465 http://dx.doi.org/10.1002/etc.5620210232
key_sur, key_gen
2003
- Heugens EHW, Jager T, Creyghton R, Kraak MHS, Hendriks
AJ, Van Straalen NM and Admiraal W (2003).
Temperature-dependent effects of cadmium on Daphnia
magna: accumulation versus sensitivity. Environ
Sci Technol 37(10):2145-2151 http://dx.doi.org/10.1021/es0264347
key_surv
- Péry ARR, Ducrot V, Mons R, Miege C, Gahou J, Gorini D
and Garric J (2003). Survival tests with Chironomus
riparius exposed to spiked sediments can profit
from DEBtox model. Wat Res 37(11):2691-2699 http://dx.doi.org/10.1016/S0043-1354(03)00074-5
key_surv
2005
2007
- Ashauer R, Boxall ABA and Brown CD (2007). New
ecotoxicological model to simulate survival of aquatic
invertebrates after exposure to fluctuating and
sequential pulses of pesticides. Environ Sci Technol
41(4):1480-1486 http://dx.doi.org/10.1021/es061727b
key_sur, key_tim
- Ashauer R, Boxall ABA and Brown CD (2007). Modeling
combined effects of pulsed exposure to carbaryl and
chlorpyrifos on Gammarus pulex. Environ Sci
Technol 41(15):5535-5541 http://dx.doi.org/10.1021/es070283w
key_sur, key_mix, key_tim
- Ashauer R, Boxall ABA and Brown CD (2007). Simulating
toxicity of carbaryl to Gammarus pulex after
sequential pulsed exposure. Environ Sci Technol
41(15):5528-5534
http://dx.doi.org/10.1021/es062977v key_sur,
key_tim
- Baas J, Van Houte BPP, Van Gestel CAM and Kooijman
SALM (2007). Modelling the effects of binary mixtures on
survival in time. Environ Toxicol Chem 26:1320-1327 http://dx.doi.org/10.1897/06-437R.1
key_sur, key_mix
- Kooijman SALM, Baas J, Bontje D, Broerse M, Jager T,
Van Gestel CAM and Van Hattum B (2007). Scaling
relationships based on partition coefficients and body
sizes have similarities and interactions. SAR QSAR
Environ Res 18:315-330 http://dx.doi.org/10.1080/10629360701304196
key_sur
2008
- Ashauer R and Brown CD (2008). Toxicodynamic
assumptions in ecotoxicological hazard models. Environ
Toxicol Chem 27(8):1817-1821 http://dx.doi.org/10.1897/07-642.1
key_sur
- Penttinen OP, Kilpi-Koski J, Jokela M, Toivainen K and
Vaisanen A (2008). Importance of dose metrics for lethal
and sublethal sediment metal toxicity in the oligochaete
worm Lumbriculus variegates. J Soil Sed
8(1):59-66 http://dx.doi.org/10.1065/jss2007.12.267
key_sur
- Smit, MGD, Ebbens E, Jak RG, Huijbregts MAJ (2008).
Time and concentration dependency in the potentially
affected fraction of species: the case of hydrogen
peroxide treatment of ballast water. Environ Toxicol
Chem 27(3):746-753 http://dx.doi.org/10.1897/07-343.1
key_sur
2009
- Baas J, Jager T and Kooijman SALM (2009). Estimation
of no effect concentrations from exposure experiments
when values scatter among individuals. Ecol Mod
220:411-418 http://dx.doi.org/10.1016/j.ecolmodel.2008.10.008
key_sur
- Baas J, Jager T and Kooijman SALM (2009). A model to
analyze effects of complex mixtures on survival. Ecotox
Environ Saf 72:669-676 http://dx.doi.org/10.1016/j.ecoenv.2008.09.003
key_sur, key_mix
- Baas J, Willems J, Jager T, Kraak MHS, Vandenbrouck T
and Kooijman SALM (2009). Prediction of daphnid survival
after in situ exposure to complex mixtures. Environ Sci
Technol 43:6064-6069 http://dx.doi.org/10.1021/es901083v
key_sur, key_mix
- Huang S, Jia Y and Wang SSY (2009). Two-dimensional
numerical and eco-toxicological modeling of chemical
spills. Front Environ Sci Engin China 3(2):178–185 http://dx.doi.org/10.1007/s11783-009-0020-9
key_sur
- Jager T and Kooijman SALM (2009). A biology-based
approach for quantitative structure-activity
relationships (QSARs) in ecotoxicity. Ecotoxicology
18:187-196 http://dx.doi.org/10.1007/s10646-008-0271-4
key_sur (open access).
2010
- Ashauer R (2010). Toxicokinetic-toxicodynamic
modelling in an individual based context-Consequences of
parameter variability. Ecol Mod 221(9):1325-1328 http://dx.doi.org/10.1016/j.ecolmodel.2010.01.015
key_sur
- Ashauer R, Hintermeister A, Caravatti I, Kretschmann A
and Escher BI (2010). Toxicokinetic and toxicodynamic
modeling explains carry-over toxicity from exposure to
diazinon by slow organism recovery. Environ Sci Technol
44(10):3963-3971 http://dx.doi.org/10.1021/es903478b
key_sur, key_tim
- Baas J and Kooijman B (2010). Chemical contamination
and the ecological quality of surface water. Envir
Pollut 158:1603-1607 http://dx.doi.org/10.1016/j.envpol.2009.12.015
key_sur, key_mix
- Baas J, Stefanowicz AM, Klimek B, Laskowski R and
Kooijman SALM (2010). Model-based experimental design
for assessing effects of mixtures of chemicals. Environ
Pollut 158:115-120 http://dx.doi.org/10.1016/j.envpol.2009.07.030
key_sur, key_mix
- Ducrot V, Péry ARR and Lagadic L (2010). Modelling
effects of diquat under realistic exposure patterns in
genetically differentiated populations of the gastropod
Lymnaea stagnalis. Phil Trans R Soc B
365:3485-3494 http://dx.doi.org/10.1098/rstb.2010.004
key sur
- Péry ARR, Troise A, Tissot S and Vincent JM (2010).
Comparison of models to analyze mortality data and
derive concentration-time response relationship of
inhaled chemicals. Regul Toxicol Pharmacol 57(1):124-128
http://dx.doi.org/10.1016/j.yrtph.2010.02.005
key_sur
2011
- Jager T, Albert C, Preuss TG and Ashauer R (2011).
General Unified Threshold model of Survival - a
toxicokinetic-toxicodynamic framework for ecotoxicology.
Environ Sci Technol 45:2529-2540 http://dx.doi.org/10.1021/es103092a
key_sur, key_gen accepted
version and SI.
- Kretschmann A, Ashauer R, Hitzfeld K, Spaak P,
Hollender J and Escher BI (2011). Mechanistic
toxicodynamic model for receptor-mediated toxicity of
diazoxon, the active metabolite of diazinon, in Daphnia
magna. Environ Sci Technol 45(11):4980-4987 http://dx.doi.org/10.1021/es1042386
key_sur
- Olsen, GH, Smit, MGD, Carroll, J, Jæger I, Smith T and
Camus L (2011). Arctic versus temperate comparison of
risk assessment metrics for 2-methyl-naphthalene. Mar
Envir Res 72(4):179-187 http://dx.doi.org/10.1016/j.marenvres.2011.08.003
key_sur
- Wolińska L, Brzuzan P, Woźny M, Góra M, Łuczyński MK,
Podlasz P, Kolwicz S and Piasecka A (2011). Preliminary
study on adverse effects of phenanthrene and its methyl
and phenyl derivatives in larval zebrafish, Danio
rerio. Environ Biotechnol 7(1):26-33 http://zfin.org/ZDB-PUB-130131-2
key_sur
2012
- Albert C, Ashauer R, Künsch HR and Reichert P (2012).
Bayesian experimental design for a
toxicokinetic-toxicodynamic model. J Stat Plan Inf
142(1):263-275 http://dx.doi.org/10.1016/j.jspi.2011.07.014
key_gen, key_tim
- Beaudouin R, Zeman FA, Péry ARR (2012). Individual
sensitivity distribution evaluation from survival data
using a mechanistic model: implications for
ecotoxicological risk assessment. Chemosphere
89(1):83–88 http://dx.doi.org/10.1016/j.chemosphere.2012.04.021
key_sur
- Kretschmann A, Ashauer R, Hollender J and Escher BI
(2012). Toxicokinetic and toxicodynamic model for
diazinon toxicity - mechanistic explanation of
differences in the sensitivity of Daphnia magna and
Gammarus pulex. Environ Toxicol Chem
31(9):2014–2022 http://dx.doi.org/10.1002/etc.1905
key_sur, key_tim
- Nyman AM, Schirmer K and Ashauer R (2012).
Toxicokinetic-toxicodynamic modelling of survival of
Gammarus pulex in multiple pulse exposures to
propiconazole: model assumptions, calibration data
requirements and predictive power. Ecotoxicology
21(7):1828-1840 http://dx.doi.org/10.1007/s10646-012-0917-0
key_sur, key_tim
- Tan QG and Wang WX (2012). Two-compartment
toxicokinetic–toxicodynamic model to predict metal
toxicity in Daphnia magna. Environ Sci Technol
46:9709-9715 http://dx.doi.org/10.1021/es301987u
key_sur
- Van Ommen Kloeke AEE, Jager T, Van Gestel CAM, Ellers
J, Van Pomeren M, Krommenhoek T, Styrishave B, Hansen M
and Roelofs D (2012). Time-related survival effects of
two gluconasturtiin hydrolysis products on the
terrestrial isopod Porcellio scaber. Chemosphere
89(9):1084–1090 http://dx.doi.org/10.1016/j.chemosphere.2012.05.074
key_sur, key_tim
- Xu X, Dixon PM, Zhao Y and Newman MC (2012).
Diagnostics to assess toxicokinetic–toxicodynamic models
with interval-censored data. Environmetrics 24:332-341 http://dx.doi.org/10.1002/env.2216
key_sur, key_tim
2013
- Ashauer R, Thorbek P, Warinton JS, Wheeler JR and
Maund S (2013). A method to predict and understand fish
survival under dynamic chemical stress using standard
ecotoxicity data. Environ Toxicol Chem 32(4):954-965 http://dx.doi.org/10.1002/etc.2144
key_sur, key_tim
- Gergs A, Zenker A, Grimm V and Preuss TG (2013).
Chemical and natural stressors combined: from cryptic
effects to population extinction. Scientific Reports
3:2036 http://dx.doi.org/10.1038/srep02036
key_sur, key_pop
- Hansen BH, Altin D, Øverjordet IB, Jager T and Nordtug
T (2013). Acute exposure of water soluble fractions of
marine diesel on Arctic Calanus glacialis and
boreal Calanus finmarchicus: Effects on survival
and biomarker response. Sci Tot Environ 449:276–284 http://dx.doi.org/10.1016/j.scitotenv.2013.01.020
key_sur
- Jager T and Hansen BH (2013). Linking survival and
biomarker responses over time. Environ Toxicol Chem
32(8):1842-1845 http://dx.doi.org/10.1002/etc.2258
key_sur, key_mol accepted
version.
- Kulkarni D, Daniels B and Preuss TG (2013).
Life-stage-dependent sensitivity of the cyclopoid
copepod Mesocyclops leuckarti to triphenyltin.
Chemosphere 92:1145-1153 http://dx.doi.org/10.1016/j.chemosphere.2013.01.076
key_sur
- Nyman AM, Hintermeister A, Schirmer K and Ashauer R
(2013). The insecticide imidacloprid causes mortality of
the freshwater amphipod Gammarus pulex by
interfering with feeding behavior. PLOS ONE 8(5): e62472
http://dx.doi.org/10.1371/journal.pone.0062472
key_sur, key_tim
2014
- Ardestani MM, Oduber F and Van Gestel CAM (2014). A
combined toxicokinetics and toxicodynamics approach to
assess the effect of pore water composition on cadmium
bioavailability to Folsomia candida. Environ
Toxicol Chem 33(7):1570–1577 http://dx.doi.org/10.1002/etc.2585
key_sur
- Baveco JM, Norman S, Roessink I, Galic N and Van den
Brink PJ (2014). Comparing population recovery after
insecticide exposure for four aquatic invertebrate
species using models of different complexity. Environ
Toxicol Chem 33(7):1517-1528 http://dx.doi.org/10.1002/etc.2605
key_sur
- Gabsi F, Hammers-Wirtz M, Grimm V, Schäffer A and
Preuss TG (2014). Coupling different mechanistic effect
models for capturing individual-and population-level
effects of chemicals: Lessons from a case where standard
risk assessment failed. Ecol Mod 280:18–29 http://dx.doi.org/10.1016/j.ecolmodel.2013.06.018
key_sur, key_pop
- Galiç N, Ashauer R, Baveco H, Nyman AM, Barsi A,
Thorbek P, Bruns E and Van den Brink PJ (2014). Modeling
the contribution of toxicokinetic and toxicodynamic
processes to the recovery of Gammarus pulex
populations after exposure to pesticides. Environ
Toxicol Chem 33(7):1476–1488 http://dx.doi.org/10.1002/etc.2481
key_sur
- Hansen BH, Altin D, Bonaunet K and Øverjordet IB
(2014) Acute toxicity of eight oil spill response
chemicals to temperate, boreal, and arctic species. J
Toxicol Environ Health A 77(9-11):495-505 http://dx.doi.org/10.1080/15287394.2014.886544
key_sur
- Jager T (2014). Reconsidering sufficient and optimal
test design in acute toxicity testing. Ecotoxicology
23(1):38-44 http://dx.doi.org/10.1007/s10646-013-1149-7
key_sur, key_gen accepted
version and SI.
- Klok C, Nordtug T and Tamis JE (2014). Estimating the
impact of petroleum substances on survival in early life
stages of cod (Gadus morhua) using the Dynamic
Energy Budget theory. Mar Environ Res 101:60-68 http://dx.doi.org/10.1016/j.marenvres.2014.09.002
key_sur, key_tim
2015
- Ashauer R, O’Connor I, Hintermeister A and Escher BI
(2015), Death dilemma and organism recovery in
ecotoxicology. Environ Sci Technol 49(16):10136–10146 http://dx.doi.org/10.1021/acs.est.5b03079
key_sur, key_gen
- Baas J and Kooijman SALM (2015). Sensitivity of
animals to chemical compounds links to metabolic rate.
Ecotoxicology 24(3):657-663 http://dx.doi.org/10.1007/s10646-014-1413-5
key_gen, key_sur
- Baas J, Spurgeon D and Broerse M (2015). A simple
mechanistic model to interpret the effects of narcotics.
SAR and QSAR in Environmental Research 26(3):165–180 http://dx.doi.org/10.1080/1062936X.2015.1018940
key_gen, key_sur
- Candy SG, Sfiligoj BJ, King CK and Mondon JA (2015).
Modelling grouped survival times in toxicological
studies using Generalized Additive Models. Environ Ecol
Stat 22:465–491 http://dx.doi.org//10.1007/s10651-014-0306-3
key_sur
- Gao Y, Feng J, and Zhu L (2015). Prediction of acute
toxicity of cadmium and lead to zebrafish larvae by
using a refined toxicokinetic-toxicodynamic model. Aquat
Toxicol 169:37-45 http://dx.doi.org/10.1016/j.aquatox.2015.09.005
key_sur
- Gergs A, Kulkarni D and Preuss TG (2015). Body
size-dependent toxicokinetics and toxicodynamics could
explain intra- and interspecies variability in
sensitivity. Environ Pollut 206:449–455 http://dx.doi.org/10.1016/j.envpol.2015.07.045
key_sur, key_gen
- He E, Baas J and Van Gestel CAM (2015). Interaction
between nickel and cobalt toxicity in Enchytraeus
crypticus is due to competitive uptake. Environ
Toxicol Chem 34 (2):328–337 http://dx.doi.org/10.1002/etc.2802
key_sur, key_mix
- Kon Kam King G, Delignette-Muller ML, Kefford BJ,
Piscart C and Charles S (2015). Constructing
time-resolved species sensitivity distributions using a
hierarchical toxico-dynamic model. Environ Sci Technol
49:12465−12473 http://dx.doi.org/10.1021/acs.est.5b02142
key_sure
- Stadnicka-Michalak J, Schirmer K and Ashauer R (2015).
Toxicology across scales: Cell population growth in
vitro predicts reduced fish growth. Sci Adv 1, e1500302
http://dx.doi.org/10.1126/sciadv.1500302
key_sur
2016
- Albert C, Vogel S and Ashauer R (2016).
Computationally efficient implementation of a novel
algorithm for the General Unified Threshold model of
Survival (GUTS). PLoS Comput Biol 12(6):e1004978. http://dx.doi.org/10.1371/journal.pcbi.1004978
key_sur
- Ashauer R, Albert C, Augustine S, Cedergreen N,
Charles S, Ducrot V, Focks A, Gabsi F, Gergs A, Goussen
B, Jager T, Kramer NI, Nyman AM, Poulsen V,
Reichenberger S, Schäfer RB, Van den Brink PJ, Veltman
K, Vogel S, Zimmer EI and Preuss TG (2016). Modelling
survival: exposure pattern, species sensitivity and
uncertainty. Sci Rep 6:29178 http://dx.doi.org/10.1038/srep29178
key_gen, key_sur.
- Baas J, Vijver M, Rambohul J, Dunbar M, Van ‘t Zelfde
M, Svendsen C and Spurgeon D (2016). Comparison and
evaluation of pesticide monitoring programs using a
process-based mixture model. Environ Toxicol Chem http://dx.doi.org/10.1002/etc.3492
key_mix, key_sur
- Dohmen P, Preuss TG, Hamer M, Galic N, Strauss T, Van
den Brink PJ, De Laender F and Bopp S (2016).
Population-level effects and recovery of aquatic
invertebrates after multiple applications of an
insecticide. IEAM 12(1):67-81 http://dx.doi.org/10.1002/ieam.1676
key_sur, key_pop
- Ducrot V, Ashauer R, Bednarska AJ, Hinarejos S,
Thorbek P and Weyman G (2016). Using
toxicokinetic-toxicodynamic modeling as an acute risk
assessment refinement approach in vertebrate ecological
risk assessment. IEAM 12(1):32-45 http://dx.doi.org/10.1002/ieam.1641
key_gen, key_sur
- Gao Y, Feng J, Han F, and Zhu L (2016). Application of
biotic ligand and toxicokinetic-toxicodynamic modeling
to predict the accumulation and toxicity of metal
mixtures to zebrafish larvae. Environ Pollut 213:16-29 http://dx.doi.org/10.1016/j.envpol.2016.01.073
key_sur
- Gergs A, Gabsi F, Zenker A and Preus RG (2016).
Demographic toxicokinetic−toxicodynamic modeling of
lethal effects. Environ Sci Technol 50(11):6017-6024 http://dx.doi.org/10.1021/acs.est.6b01113
key_sur
- Hesketh H, Lahive E, Horton AA , Robinson AG, Svendsen
C, Rortais A, Dorne JL, Baas J, Spurgeon DJ and Heard MS
(2016). Extending standard testing period in honeybees
to predict lifespan impacts of pesticides and heavy
metals using dynamic energy budget modelling. Scientific
Reports 6: 37655. http://dx.doi.org/10.1038/srep37655
key_sur
- Jager T, Altin D, Miljeteig C and Hansen BH (2016).
Stage-dependent and sex-dependent sensitivity to water
soluble fractions of fresh and weathered oil in the
marine copepod Calanus finmarchicus. Environ
Toxicol Chem 35(3):728-735 http://dx.doi.org/10.1002/etc.3237
key_sur, key_mix accepted
version and SI.
2017
- Ashauer A, O'Connor I, and Escher BI (2017). Toxic
mixtures in time – the sequence makes the poison.
Environ Sci Technol 51:3084-3092 http://dx.doi.org/10.1021/acs.est.6b06163
key_sur, key_mix
- Cedergreen N, Dalhoff K, Li D, Gottardi M and
Kretschmann AC (2017). Can toxicokinetic and
toxicodynamic modeling be used to understand and predict
synergistic interactions between chemicals? Environ Sci
Technol 51:14379−14389. http://dx.doi.org/10.1021/acs.est.7b02723
key_sur, key_mix
- Chen WQ, Wang WX and Tan QG (2017). Revealing the
complex effects of salinity on copper toxicity in an
estuarine clam Potamocorbula laevis with a
toxicokinetic-toxicodynamic model. Environ Pollut
222:323-330 https://doi.org/10.1016/j.envpol.2016.12.033
key_sur
- Delignette-Muller ML, Ruiz P and Veber P (2017).
Robust fit of toxicokinetic−toxicodynamic models using
prior knowledge contained in the design of survival
toxicity tests. Environ Sci Technol 51(7):4038-4045 http://dx.doi.org/10.1021/acs.est.6b05326
key_sur See also comment
by T. Jager and response
of the authors.
- Gao Y, Feng J, Wang C, and Zhu L (2017). Modeling
interactions and toxicity of Cu-Zn mixtures to zebrafish
larvae. Ecotox Environ Saf 138:146–153 http://dx.doi.org/10.1016/j.ecoenv.2016.12.028
key_sur key_mix
- Gao Y, Feng J, and Zhu L (2017). Toxicodynamic
modeling of zebrafish larvae to metals using stochastic
death and individual tolerance models: comparisons of
model assumptions, parameter sensitivity and predictive
performance. Ecotoxicology 26:295-307 http://dx.doi.org/10.1007/s10646-017-1763-x
key_sur key_mix
- Heard MS, Baas J, Dorne JL , Lahive E, Robinson AG,
Rortais A, Spurgeon DJ, Svendsen C and Hesketh H (2017).
Comparative toxicity of pesticides and environmental
contaminants in bees: are honey bees a useful proxy for
wild bee species? Sci Tot Environ 578:357-365. http://dx.doi.org/10.1016/j.scitotenv.2016.10.180
key_sur
- Henry Y, Piscart C, Charles S and Colinet H (2017).
Combined effect of temperature and ammonia on molecular
response and survival of the freshwater crustacean Gammarus
pulex. Ecotox Environ Saf 137:42–48. http://dx.doi.org/10.1016/j.ecoenv.2016.11.011
key_sur
- Jager T, Øverjordet IB, Nepstad R and Hansen BH
(2017). Dynamic links between lipid storage,
toxicokinetics and mortality in a marine copepod exposed
to dimethylnaphthalene. Environ Sci Technol.
51(13):7707-7713. http://dx.doi.org/10.1021/acs.est.7b02212
key_sur accepted
version and SI.
- Robinson A, Hesketh H, Lahive E, Horton AA, Svendsen
C, Rortais A, Dorne JL, Baas J, Heard MS and Spurgeon DJ
(2017). Comparing bee species responses to chemical
mixtures: common response patterns? PLoSONE
12(6):e0176289 https://doi.org/10.1371/journal.pone.0176289
key_sur, key_mix
2018
- Baudrot V and S Charles (2018). Recommendations to
address uncertainties in environmental risk assessment
using toxicokinetics-toxicodynamics models. bioRxiv:
356469. https://doi.org/10.1101/356469
ver. 3 peer-reviewed and recommended by PCI
Ecol. key_sur
- Baudrot V, Preux S, Ducrot V, Pave A and Charles S
(2018). New insights to compare and choose TKTD models
for survival based on an interlaboratory study for Lymnaea
stagnalis exposed to Cd. Environ Sci Technol
52(3):1582–1590. https://dx.doi.org/10.1021/acs.est.7b05464
key_sur
- Baudrot V, Veber P, Gence G and Charles S (2018). Fit
reduced GUTS models online: from theory to practice.
IEAM 14(5):625-630. https://doi.org/10.1002/ieam.4061
key_gen
- Diouf A, BI Camara, D Ngom, H Toumi, V Felten, JF
Masfaraud and JF Férard (2018). Bayesian inference of a
dynamical model evaluating deltamethrin effect on Daphnia
survival. Biomath 7, 1812177, http://dx.doi.org/10.11145/j.biomath.2018.12.177
key_surv
- EFSA (2018). Scientific Opinion on the state of the
art of Toxicokinetic/Toxicodynamic (TKTD) effect models
for regulatory risk assessment of pesticides for aquatic
organisms. EFSA journal 16(8): 5377. https://doi.org/10.2903/j.efsa.2018.5377
key_surv, key_tim, key_gen
- Feng J, Gao Y, Chen M, Xu X, Huang M, Yang T, Chen N
and Zhu L (2018). Predicting cadmium and lead toxicities
in zebrafish (Danio rerio) larvae by using a
toxicokinetic–toxicodynamic model that considers the
effects of cations. Sci Total Environ 625:1584–1595. https://doi.org/10.1016/j.scitotenv.2018.01.068
key_surv
- Focks A, Belgers D, Boerwinkel MC, Buijse L, Roessink
I and Van den Brink PJ (2018). Calibration and
validation of toxicokinetic-toxicodynamic models for
three neonicotinoids and some aquatic
macroinvertebrates. Ecotoxicology 27(7):992-1007. https://doi.org/10.1007/s10646-018-1940-6
key_surv, key_tim
- Horton AA, MG Vijver, E Lahive, DJ Spurgeon, C
Svendsen, R Heutink PM van Bodegom and J Baas (2018).
Acute toxicity of organic pesticides to Daphnia
magna is unchanged by co-exposure to polystyrene
microplastics. Ecotox Environ Saf 166:26-34. https://dx.doi.org/10.1016/j.ecoenv.2018.09.052
key_surv
- Jaikumar G, J Baas, NR Brun, MG Vijver and T Bosker
(2018). Acute sensitivity of three Cladoceran species to
different types of microplastics in combination with
thermal stress. Environ Poll 239:733-740 https://doi.org/10.1016/j.envpol.2018.04.069
key_surv
- Jager T and Ashauer R (2018). How to evaluate the
quality of toxicokinetic-toxicodynamic models in the
context of environmental risk assessment. IEAM
14(5):604-614. https://doi.org/10.1002/ieam.2026
key_gen (general paper on TKTD models,
using GUTS as example) accepted
version
- Thursby G, Sappington K and Etterson M (2018).
Coupling toxicokinetic–toxicodynamic and population
models for assessing aquatic ecological risks to
time-varying pesticide exposures. Environ Toxicol
Chem 37(10):2633-2644. https://doi.org/10.1002/etc.4224
key_pop
2019
- Baudrot V and S Charles (2018). Recommendations to
address uncertainties in environmental risk assessment
using toxicokinetics-toxicodynamics models. Sci Rep
9:11432. https://doi.org/10.1038/s41598-019-47698-0
key_surv, key_gen
- Bechmann RK, M Arnberg, A Gomiero, S Westerlund, E
Lyng, M Berry, T Agustsson, T Jager, L Burridge (2019).
Gill damage and delayed mortality of Northern shrimp (Pandalus
borealis) after short time exposure to
anti-parasitic veterinary medicine containing hydrogen
peroxide. Ecotox Environ Saf 180:473-482. https://doi.org/10.1016/j.ecoenv.2019.05.045
key_surv, key_tim
- Gabsi F, A Solga, E Bruns, C Leake and TG Preuss
(2019). Short-term to long-term extrapolation of lethal
effects of an herbicide on the marine mysid shrimp Americamysis
bahia by use of the General Unified Threshold
model of Survival (GUTS). IEAM 15(1):29-39. https://dx.doi.org/10.1002/ieam.4092
key_surv, key_tim
- Gergs A, KJ Rakel, D Liesy, A Zenker and S Classen
(2019). Mechanistic effect modeling approach for the
extrapolation of species sensitivity. Environ Sci
Technol 53(16):9818-9825. http://dx.doi.org/10.1021/acs.est.9b01690
key_sur
- He A, X Liu, L Qu, Y Gao, J Feng and L Zhu (2019).
Comparison of the general threshold model of survival
and dose–response models in simulating the acute
toxicity of metals to Danio rerio. Environ
Toxicol Chem 38(10):2169-2177. https://doi.org/10.1002/etc.4534
key_surv
- Sardi, AE, S Augustine, GH Olsen and L Camus (2019).
Exploring inter-species sensitivity to a model
hydrocarbon, 2-Methylnaphtalene, using a process-based
model. Environ Sci Poll Res 26(11):11355-11370. https://doi.org/10.1007/s11356-019-04423-8
key_sur
- Tan QG, S Lu, R Chen and J Peng (2019). Making acute
tests more ecologically relevant: cadmium
bioaccumulation and toxicity in an estuarine clam under
various salinities modeled in a
toxicokinetic–toxicodynamic framework. Environ Sci
Technol 53(5):2873-2880. http://dx.doi.org/10.1021/acs.est.8b07095
key_sur
DOI: 10.1021/acs.est.8b07095
- Van den Brink PJ, DM Buijert-de Gelder, TCM Brock, I
Roessink and A Focks (2019). Exposure pattern-specific
species sensitivity distributions for the ecological
risk assessments of insecticides. Ecotox Environ Saf
180:252-258. https://doi.org/10.1016/j.ecoenv.2019.05.022
key_sur, key_tim
- Vighi M, A Barsi, A Focks and F Grisoni (2019).
Predictive models in ecotoxicology: bridging the gap
between scientific progress and regulatory applicability
- remarks and research needs. IEAM 15(3):345-351. https://dx.doi.org/10.1002/ieam.4136
key_gen (review)
2020
- Agatz, A, R Ashauer, P Sweeney and CD Brown (2020). A
knowledge-based approach to designing control strategies
for agricultural pests. Agricultural Systems 183:102865.
https://doi-org.vu-nl.idm.oclc.org/10.1016/j.agsy.2020.102865
key_sur, key_tim
- MJ Arlos, A Focks, J Hollender and C Stamm (2020).
Improving risk assessment by predicting the survival of
field gammarids exposed to dynamic pesticide mixtures.
Environ Sci Technol 54(19):12383-12392. https://dx.doi.org/10.1021/acs.est.0c03939
key_sur, key_tim
- Ashauer R, R Kuhl, E Zimmer and M Junghans (2020),
Effect modelling quantifies the difference between the
toxicity of average pesticide concentrations and
time‐variable exposures from water quality monitoring.
Environ Toxicol Chem 39(11):2158-2168. https://doi.org/10.1002/etc.4838
key_sur, key_tim
- Dalhoff K, AM Bruun Hansen, J Jessen Rasmussen, A
Focks, B W Strobel and N Cedergreen (2020). Linking
morphology, toxicokinetic and toxicodynamic traits of
aquatic invertebrates to pyrethroid sensitivity. Environ
Sci Technol 54(9) 5687–5699. https://doi.org/10.1021/acs.est.0c00189
key_sur
- Gao Y, Z Xie, M Feng, J Feng, L Zhu (2020). A
biological characteristic extrapolation of compound
toxicity for different developmental stage species with
toxicokinetic-toxicodynamic model. Ecotox Environ Saf
203:111043. https://doi.org/10.1016/j.ecoenv.2020.111043
key_sur
- Pedersen KE, NN Pedersen, NV Meyling, BL Fredensborg
and N Cedergreen (2020). Differences in life stage
sensitivity of the beetle Tenebrio molitor
towards a pyrethroid insecticide explained by
stage-specific variations in uptake, elimination and
activity of detoxifying enzymes. Pest Biochem Physiol
162:113-121. https://doi.org/10.1016/j.pestbp.2019.09.009
key_sur
- Wu F, Y Gao, Z Zuo, J Feng, Z Yan and L Zhu (2020).
Different decreasing rates of chemical threshold
concentrations can be explained by their toxicokinetic
and toxicodynamic characteristics. Sci Tot Environ 708,
135234. https://doi.org/10.1016/j.scitotenv.2019.135234
key_sur
- Zhong G, S Lu, R Chen, N Chen and QG Tan (2020).
Predicting risks of cadmium toxicity in
salinity-fluctuating estuarine waters using the
toxicokinetic–toxicodynamic model. Environ Sci Technol
54(21):13899-13907. https://dx.doi.org/10.1021/acs.est.0c06644
key_sur
2021
- Bart, S, T Jager, A Robinson, E Lahive, D Spurgeon, R
Ashauer (2021). Predicting mixture effects over time
with toxicokinetic-toxicodynamic models (GUTS):
assumptions, experimental testing & predictive
power. Environ Sci Technol 55(4):2430-2439. https://dx.doi.org/10.1021/acs.est.0c05282
key_sur, key_mix (Open Access).
- Baudrot V, S Charles (2021). TKTDsimulation.jl and
tktdjl2r: innovative packages for High Performance
Computing of survival predictions in support of
environmental risk assessment under time-variable
scenarios. Preprint deposited at bioRxiv
2021.02.18.431769. https://doi.org/10.1101/2021.02.18.431769
key_sur, key_tim
- Baudrot V, A Lang, C Stefanescu, S Soubeyrand and A
Messéan (2021). Extension of the spatially‐ and
temporally‐explicit “briskaR‐NTL” model to assess
potential adverse effects of Bt‐maize pollen on
non‐target Lepidoptera at landscape level. EFSA
supporting publication 18(4):EN‐6443. 137 pp. https://doi.org/10.2903/sp.efsa.2021.EN-6443
key_sur
- Baudrot V, E Walker, A Lang, C Stefanescu, JF Rey, S
Soubeyrand and A Messéan (2021). When the average hides
the risk of Bt-corn pollen on non-target Lepidoptera:
application to Aglais io in Catalonia. Ecotox
Environ Saf 207:111215. https://doi.org/10.1016/j.ecoenv.2020.111215
key_sur, key_tim
- Bhattacharya, R, A Chatterjee, S Chatterjee, and NC
Saha (2021). Acute toxicity and impact of sublethal
exposure to commonly used surfactants sodium dodecyl
sulphate, cetylpyridinium chloride and sodium laureth
sulphate on oxidative stress enzymes in oligochaete worm
Branchiura sowerbyi (Beddard, 1892). Aquaculture
Research 52(12):6367-6379. https://doi.org/10.1111/are.15501
key_sur
- Brock T, M Arena, N Cedergreen, S Charles, S Duquesne,
A Ippolito, M Klein, M Reed, I Teodorovic, PJ van den
Brink and A Focks (2021). Application of GUTS models for
regulatory aquatic pesticide risk assessment illustrated
with an example for the insecticide chlorpyrifos. Integr
Environ Assess Manag 17(1):243-258. https://doi.org/10.1002/ieam.4327
key_gen
- Cedergreen N, G Bellisai, L Herrero-Nogareda, E Boesen
and Kristoffer Dalhoff (2021). Using TKTD Models in
combination with in vivo enzyme inhibition
assays to investigate the mechanisms behind synergistic
interactions across two species. Environ Sci &
Technol 55(20):13990-13999. https://doi.org/10.1021/acs.est.1c02222
key_sur, key_mix
- Charles S, V Baudrot (2021). morse: an R-package in
support of environmental risk assessment. bioRxiv
2021.04.07.438826 https://doi.org/10.1101/2021.04.07.438826
key_sur
- Charles S, A Ratier, V Baudrot, G Multari, A
Siberchicot, D Wu and C Lopes (2021). Taking full
advantage of modelling to better assess environmental
risk due to xenobiotics. bioRxiv 2021.03.24.436474. https://doi.org/10.1101/2021.03.24.436474
key_sur, key_tim
- Gao Y, Z Xie, J Zhu, H Cao, J Tan, J Feng and L Zhu
(2021). Understanding the effects of metal pre-exposure
on the sensitivity of zebrafish larvae to metal
toxicity: a toxicokinetics–toxicodynamics approach.
Ecotox Environ Saf 209:111788. https://doi.org/10.1016/j.ecoenv.2020.111788
key_sur
- Gergs, A, J Hager, E Bruns and TG Preuss (2001),
Disentangling mechanisms behind chronic lethality
through toxicokinetic‐toxicodynamic modelling. Environ
Toxicol Chem. 40(6):1706-1712. https://doi.org/10.1002/etc.5027
key_sur, key_tim
- Griffiths MR, BW Strobel, JR Hama and N Cedergreen
(2021). Toxicity and risk of plant-produced alkaloids to
Daphnia magna. Environ Sci Eur 33:10. https://doi.org/10.1186/s12302-020-00452-0
key_sur
- Huang A, NW van den Brink, L Buijse, I Roessink, PJ
van den Brink (2021). The toxicity and toxicokinetics of
imidacloprid and a bioactive metabolite to two aquatic
arthropod species. Aquatic Toxicology 235:105837. https://doi.org/10.1016/j.aquatox.2021.105837
key_sur
- Jager, T (2021). Robust likelihood-based approach for
automated optimization and uncertainty analysis of
toxicokinetic-toxicodynamic models. Integr Environ
Assess Manag 17(2):388-397. https://doi.org/10.1002/ieam.4333
key_gen accepted
version and SI.
(focusses on statistics, optimisation
and uncertainty, using GUTS/openGUTS as case study)
- Li H, Q Zhang, H Su, J You and WX Wang (2021). High
tolerance and delayed responses of Daphnia magna
to neonicotinoid insecticide imidacloprid: toxicokinetic
and toxicodynamic modelling. Environ Sci Technol
55(1):458-467. https://dx.doi.org/10.1021/acs.est.0c05664
key_sur
- Schmolke A, SM Bartell, C Roy D Desmarteau, A Moore,
MJ Cox, NL Maples-Reynolds N Galic and R Brain (2021).
Applying a hybrid modeling approach to evaluate
potential pesticide effects and mitigation effectiveness
for an endangered fish in simulated oxbow habitats.
Environ Toxicol Chem 40(9):2615-2628. https://doi.org/10.1002/etc.5144.
key_sur, key_tim
- Yang L, J Feng, Y Gao and L Zhu (2021). Role of
toxicokinetic and toxicodynamic parameters in explaining
the sensitivity of zebrafish larvae to four metals.
Environ Sci Technol 55(13):8965-8976. https://dx.doi.org/10.1021/acs.est.0c08725
key_sur
2022
- Accolla C, A Schmolke, A Jacobson, C Roy, VE Forbes, R
Brain and N Galic (2022). Modeling pesticide effects on
multiple threatened and endangered cyprinid fish
species: the role of life-history traits and ecology.
Ecologies 3(2):183-205. https://doi.org/10.3390/ecologies3020015
key_pop (focus lies on DEB-TKTD in a
population context, but openGUTS is used to calibrate
the lethal-effects module)
- Baas J, B Goussen, M Miles, TG Preuss and I Roessink
(2022), BeeGUTS - a TKTD model for the interpretation
and integration of acute and chronic honey bee tests.
Environ Toxicol Chem. 41(9):2193-2201. https://doi.org/10.1002/etc.5423
key_sur, key_tim
- Bart S, S Short, T Jager, EJ Eagles, A Robinson, C
Badder, E Lahive, DJ Spurgeon and Roman Ashauer (2022).
How to analyse and account for interactions in mixture
toxicity with toxicokinetic-toxicodynamic models. Sci
Total Environ 843:157048. https://doi.org/10.1016/j.scitotenv.2022.157048
(open access) key_sur, key_mix
- Carroll J, HG Frøysa, F Vikebø, OJ Broch, D Howell, R
Nepstad, S Augustine, GM Skeie, M Bockwoldt (2022). An
annual profile of the impacts of simulated oil spills on
the Northeast Arctic cod and haddock fisheries. Marine
Pollut Bull 184:114207.
https://doi.org/10.1016/j.marpolbul.2022.114207
key_sur, key_tim, key_mix, key_pop
- Charles S, A Ratier, V Baudrot, G Multari, A
Siberchicot, D Wu and C Lopes (2022). Taking full
advantage of modelling to better assess environmental
risk due to xenobiotics - the all-in-one facility
MOSAIC. Environ Sci Pollut Res 29, 29244–29257. https://doi.org/10.1007/s11356-021-15042-7
key_sur
- Gao Y, J Zhu and A He (2022). Effect of dissolved
organic matter on the bioavailability and toxicity of
cadmium in zebrafish larvae: determination based on
toxicokinetic–toxicodynamic processes. Water Res
226:119272. https://doi.org/10.1016/j.watres.2022.119272
key_sur
- Garai P, P Banerjee, P Sharma, P Mondal, NC Saha and C
Faggio (2022). Nitrate-induced toxicity and potential
attenuation of behavioural and stress biomarkers in Tubifex
tubifex. Int J Environ Res 16:63. https://doi.org/10.1007/s41742-022-00443-4
key_sur
- Ghosh S, N Chandra Saha, R Bhattacharya, S Medda and S
Pal (2022). Acute toxicity and sublethal effects of
lauryl alcohol ethoxylate on oxidative stress and
antioxidant defense parameters in benthic oligochaete
Worm, Tubifex tubifex. IJRASET 10(11):1090-1101.
http://dx.doi.org/10.22214/ijraset.2022.47561
key_sur
- Huang A, A Mangold-Döring, A Focks, C Zhang and PJ Van
den Brink (2022). Comparing the acute and chronic
toxicity of flupyradifurone and imidacloprid to
non-target aquatic arthropod species. Ecotox Environ Saf
243:113977. https://doi.org/10.1016/j.ecoenv.2022.113977
key_sur
- Huang A, I Roessink, NW van den Brink and PJ van den
Brink (2022). Size- and sex-related sensitivity
differences of aquatic crustaceans to imidacloprid.
Ecotox Environ Saf 242: 113917. https://doi.org/10.1016/j.ecoenv.2022.113917
key_sur
- Larras F, S Charles, A Chaumot, C Pelosi, M Le Gall, L
Mamy and R Beaudouin (2022). A critical review of effect
modeling for ecological risk assessment of plant
protection products. Environ Sci Pollut Res
29:43448–43500. https://doi.org/10.1007/s11356-022-19111-3
key_gen
- Mangold-Döring A, A Huang, EH van Nes, A Focks and PJ
van den Brink (2022). Explicit consideration of
temperature improves predictions of
toxicokinetic–toxicodynamic models for flupyradifurone
and imidacloprid in Gammarus pulex. Environ Sci
Technol 56:15920-15929. http://dx.doi.org/10.1021/acs.est.2c04085
key_sur
- Medda S, NC Saha, R Bhattacharya, A Chatterjee, S
Ghosh and S Pal (2022). Toxic effects of fungicide
Sheathmar to worm, Tubifex tubifex. IJRASET
10(12):467-476. http://dx.doi.org/10.22214/ijraset.2022.47891
key_sur
- Morgado RG, MD Pavlaki, AMVM Soares and S Loureiro
(2022). Terrestrial organisms react differently to nano
and non-nano Cu(OH)2 forms. Sci Total Environ
807(2):150679. https://doi.org/10.1016/j.scitotenv.2021.150679
key_sur
- Morgado RG, A Pereira, DN Cardoso, M Prodana, C
Malheiro, ARR Silva, A Vinhas, AMVM Soares and S
Loureiro (2022). The effects of different temperatures
in mercury toxicity to the terrestrial isopod Porcellionides
pruinosus. Environ Pollut 314:120209. https://doi.org/10.1016/j.envpol.2022.120209
key_sur
- Moulding BJG, G Kon Kam King, M Shenton, JP Bray, SJ
Nichols and BJ Kefford (2022). Assessing the Relative
Toxicity of Different Road Salts and Effect of
Temperature on Salinity Toxicity: LCx Values versus
No-Effect Concentration (NEC) Values. Arch Environ
Contam Toxicol 82:281-293. https://doi.org/10.1007/s00244-021-00908-1
key_sur
- Mukherjee D, S Saha, AV Chukwuka, B Ghosh, K Dhara, NC
Saha, P Pal and C Faggio (2022). Antioxidant enzyme
activity and pathophysiological responses in the
freshwater walking catfish, Clarias batrachus
Linn under sub-chronic and chronic exposures to the
neonicotinoid, Thiamethoxam. Sci Total Environ
836:155716. https://doi.org/10.1016/j.scitotenv.2022.155716
key_sur
- Nickisch D, BC Rall, A Singer and R Ashauer (2022).
Fish species sensitivity ranking depends on pesticide
exposure profiles. Environ Toxicol Chem 41(7):1732-1741.
http://dx.doi.org/10.1002/etc.5348
key_sur, key_tim
- Pollesch NL, KM Flynn, SM Kadlec, JA Swintek, S
Raimondo and MA Etterson (2022). Developing integral
projection models for ecotoxicology. Ecol Modell
464:109813. https://doi.org/10.1016/j.ecolmodel.2021.109813
key_sur, key_pop
- Rakel K, D Becker, D Bussen, S Classen, T Preuss, T
Strauss, A Zenkers and A Gergs (2022). Physiological
dependency explains temperature differences in
sensitivity towards chemical exposure. Arch Environ
Contam Toxicol 83:349-360. https://doi.org/10.1007/s00244-022-00963-2
key_sur
- Saha S, AV Chukwuka, D Mukherjee, K Dhara, NC Saha and
C Faggio (2022). Behavioral and physiological toxicity
thresholds of a freshwater vertebrate (Heteropneustes
fossilis) and invertebrate (Branchiura sowerbyi),
exposed to zinc oxide nanoparticles (nZnO): A General
Unified Threshold model of Survival (GUTS). Comp Biochem
Physiol Part C: Toxicol Pharmacol 262:109450. https://doi.org/10.1016/j.cbpc.2022.109450
key_sur
2023
- Badder C, S Bart, A Robinson, H Hesketh, P Kille and
DJ Spurgeon (2023). A novel Lepidoptera bioassay
analysed using a reduced GUTS model. Ecotoxic Environ
Saf 251:114504. https://doi.org/10.1016/j.ecoenv.2023.114504
key_sur
- Buddendorf WB, L Wipfler, W Beltman, H Baveco, MC
Braakhekke, S Bub, A Gergs and T Schad (2023). Aquatic
Risks at the landscape scale: A case study for
pyrethroid use in pome fruit orchards in Belgium.
Environ Sci & Technol 57(41):15608-15616. https://doi.org/10.1021/acs.est.3c02716
key_sur, key_tim
- Cao X, ZX Yu, M Xie, K Pan and QG Tan (2023). Higher
risks of copper toxicity in turbid waters: quantifying
the bioavailability of particle-bound metals to set
site-specific water quality criteria. Environ Sci
Technol 57(2):1060-1070. https://doi.org/10.1021/acs.est.2c06447
key_sur
- Nepstad R, K Kotzakoulakis, BH Hansen, T Nordam and J
Carroll (2023). An impact-based environmental risk
assessment model toolbox for offshore produced water
discharges. Marine Poll Bull 191:114979. https://doi.org/10.1016/j.marpolbul.2023.114979
key_sur
- Plantade J, V Baudrot and S Charles (2023). hb or not
hb - when and why accounting for background mortality in
toxicological survival models matters? MethodsX
10:102114 https://doi.org/10.1016/j.mex.2023.102114.
Preprint in bioRXiv https://doi.org/10.1101/2023.01.25.525496
key_sur, key_gen
- Revel, M, K Medjoubi, S Charles, AS Hursthouse and S
Heise (preprint). Mechanistic analysis of the sub
chronic toxicity of La and Gd in Daphnia magna
based on TKTD modelling and synchrotron X-ray
fluorescence imaging. http://dx.doi.org/10.2139/ssrn.4570452
key_sur
- Sengupta S., H.P. Leinaas, C.A.M. van Gestel, T.
Jager, T. Rundberget, K. Borgå (2023). High sensitivity
to dietary imidacloprid exposure in early life stages of
Folsomia quadrioculata (Collembola) populations
from contrasting climates. Appl Soil Ecol 187:104880. https://doi.org/10.1016/j.apsoil.2023.104880
key_sur
- Singer A, D Nickisch and A Gergs (2023). Joint
survival modelling for multiple species exposed to
toxicants. Sci Total Environ 857(2):159266. https://doi.org/10.1016/j.scitotenv.2022.159266
key_sur, key_tim
- ...
2024
- Bauer, B, A Singer, Z Gao, O Jakoby, J Witt, T Preuss
and A Gergs (Acc.). A toxicokinetic-toxicodynamic
modelling workflow assessing the quality of input
mortality data. Accepted in Environ Toxicol Chem. https://doi.org/10.1002/etc.5761
key_sur, key_tim
- ...
|