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Abstract

Models based on Dynamic Energy Budget (DEB) theory offer important
advantages in the interpretation of toxicant effects on life-history traits. In
contrast to descriptive approaches, they make use of all of the data (all time
points, and all endpoints) in one framework, and yield time-independent
parameters. In 1996, a suite of simplified DEB models for the analysis of
standard toxicity tests was presented under the name ‘DEBtox’. Unfortu-
nately, the original equations contained a few errors and inconsistencies. In
this paper, we revisit DEBtox, presenting a new and consistent set of simpli-
fied DEB equations. The full derivation is presented in the supplementary
material to facilitate critical examination of our work. The simplification
is appropriate for situations where body size at the start of investment in
reproduction remains constant, as well as the egg costs (and thus hatchling
size). These conditions are probably met in many ecotoxicological tests, al-
lowing this framework to be used, at least as a first approach. Additionally,
we present a statistical framework for fitting the model to experimental data
sets, and to calculate intervals on parameter estimates, model curves and
model predictions. As an illustration, we provide a case study for the effects
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of fluoranthene on Daphnia magna, although the framework is by no means
limited to this species or toxicant.
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1. Introduction

Models based on Dynamic Energy Budget (DEB) theory (Kooijman,
2010; Nisbet et al., 2000) offer important advantages in the analysis and
interpretation of toxicants effects on life-history traits such as growth, repro-
duction and survival. In contrast to descriptive approaches, a DEB-based
analysis can make use of all of the data (all time points, and all endpoints)
in one framework, and yields time-independent parameters that can be com-
pared between chemicals (Jager et al., 2004; Billoir et al., 2008b). The theory
offers a link between effects on various endpoints, which is essential for ex-
trapolation to the population level (Jager and Klok, 2010; Klanjscek et al.,
2006), and to interpret effects at the level of gene expression (Swain et al.,
2010). Furthermore, the DEB concept is easily extended to deal with effects
resulting from time-varying exposure (Pieters et al., 2006) and mixtures of
toxicants (Jager et al., 2010). The underlying principle is that toxicants,
once taken up in the body, influence the acquisition and/or use of energy by
the organism. Toxicants may for example decrease the feeding rate, or in-
crease maintenance costs. The idea of focussing on the energy budget comes
quite natural if we approach the problem from the other side: if there is a
decrease in growth or reproduction of an individual, there is obviously less
energy devoted to these processes. So, where did that energy go to? Was
it never assimilated from food in the first place, or was there an additional
energy drain somewhere in the organism?

The principle of interpreting toxic effects based on energy budgets was
first formulated in the seminal paper of Kooijman and Metz (1984). More
than a decade later, this approach was streamlined into a simple model that
could be used to analyse results from standard toxicity tests (Kooijman and
Bedaux, 1996b,a). This approach was called ‘DEBtox’, and was also im-
plemented into freely-available software with the same name. These models
were simple enough to make use of the results from toxicity tests conducted
according to standard test protocols. The simplifications necessary to derive
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these models do limit the possibilities for data analysis in potentially serious
ways (Jager et al., 2010). A full-scale DEB model can provide an entirely
consistent analysis of toxic effects, but requires more parameters to be es-
timated from the data, and often additional information (such as egg size
and hatching time) (Jager and Klok, 2010). Furthermore, there are quite a
number of situations were the full model does not provide much of an added
benefit, given the available experimental data (Jager and Klok, 2010). For
these reasons, we consider that there is a need for simplified DEB models in
ecotoxicology, although a new derivation is required, as the original model
equations of DEBtox contained a few errors and inconsistencies. The major
errors were spotted, and corrected, by Billoir et al. (2008b), but a number of
issues remained.

In this paper, we present a set of simplified DEB equations, derived from
the equations in Kooijman (2010). This derivation solves the issues with the
original set of equations; the full derivation is presented as supplementary
material. Furthermore, we discuss the underlying assumptions and associated
limitations of this approach, and provide a pragmatic statistical framework
to analyse experimental data. We illustrate the possibilities of this frame-
work by analysing a simple partial life-cycle study for the water flea Daphnia
magna.

2. Theory

2.1. Background of the simplified model for animals

The standard DEB animal is an animal that feeds on one kind of food, and
does not change its shape over its life cycle (an isomorph). Its biomass con-
sists of two components, each with constant composition: structure (which
requires maintenance) and reserve (which can fuel metabolic processes). The
energy flows are schematically presented in Figure 1. Food is taken up by
the organism, and part of the energy is assimilated into the reserve. The
reserve is mobilised and split into two fluxes: a fraction κ to the soma, and
the rest to maturation and reproduction. Somatic maintenance costs have to
be satisfied first, and the rest of the flux to the soma can be used for growth.
Similarly, maturity maintenance costs have to be satisfied first and the re-
mainder is used for maturation (in embryos and juveniles) or reproduction
(in adults). The investment in reproduction is collected in a reproduction
buffer, which is converted into eggs at spawning. None of the state variables
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Figure 1: Schematic diagram of the energy flows in a standard DEB animal. The nodes
b and p denote switches at birth (start of feeding) and puberty (start of reproductive
investment). The mobilisation flux is split according to a constant fraction κ.

can be measured directly; auxiliary theory is needed to link model proper-
ties to observable quantities. For example, the physical size of an organism
contains contributions from reserve, structure, and possibly the reproduction
buffer. More information about this model can be found in Kooijman (2010)
and Kooijman et al. (2008), and the equations provided in the supplementary
material.

The equations for DEBtox (Kooijman and Bedaux, 1996b) have been de-
rived from the full standard model by a re-parametrisation (to remove the
dimension of ‘energy’ from the model system), and by using three additional
assumptions. The first assumption is that maturity is always a constant
proportion of structure (for embryos and juveniles). Therefore, instead of a
maturity threshold for birth (the start of feeding) and puberty (the start of
investment into reproduction), we can take thresholds for structural length.
Therefore, we do not have to follow maturity as a state variable. This as-
sumption does not only have to hold for different food levels, but also under
toxicant stress (see discussion in Jager et al., 2010). The second assumption
is that the energetic costs for an egg are constant under all circumstances.
This contrasts the assumption for ‘maternal effects’ in DEB theory, where
egg costs depend on the state variables of the mother (feeding status, and
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possibly toxicant body burden). The third assumption is that the reserve is
always in a steady state with the food level. This is realistic when we only
consider situations with constant food levels, or when the changes in food
availability are slow relative to the dynamics of the reserve. Other assump-
tions that are usually made when working with DEBtox models (although
not absolutely required) is that there is no reproduction buffer (offspring are
produced as a continuous flux), and that the measured size of the organisms
is proportional to the structural size in the DEB model.

In the original DEBtox equations (Kooijman and Bedaux, 1996b), the
reproduction equations for effects on assimilation or maintenance were in-
correct, probably owing to the complexities of working consistently within
a scaled-length framework. Billoir et al. (2008b) corrected these errors, but
other issues remained. In the original equations, the Von Bertalanffy growth
rate is not a constant but a function of food availability (this is mentioned
in Kooijman and Bedaux, 1996b). To use this rate as a model parameter is
quite impractical, because its value will depend on the food level, and thus
also changes when effects on assimilation are considered. A less conspicu-
ous problem with the original formulation is in its approach for considering
an effect on growth costs. The simplified approach assumes that length at
puberty is always constant, also under toxicant stress. For this to hold, the
ratio of maturity to structural size must remain constant. However, this ra-
tio changes when the costs for growth are affected, which implies that the
length at puberty will shift. A simple way to repair this problem is to assume
that the toxicant also affects the costs for maturation with the same factor
as the costs for growth. This ensures that the length at puberty remains
constant, although the applicability of this assumption remains to be tested.
A final problem is that body size in the equations is represented in scaled
length (scaled to the maximum size in the control), which makes a consistent
application of toxicant stress cumbersome and difficult to check. To solve
these issues, we derived a new set of simplified DEB equations. Additionally,
we included the reserve compartment as a dynamic state. This does not cost
additional parameters, and leads to a more consistent approach when food
levels vary or when there is a rapid toxicant effect on assimilation.

2.2. Re-derived simplified DEB equations

An extensive derivation of the new set of DEBtox equations is provided
in the supplementary material. The state variables for the organism are
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Symbol interpretation dimensions

ḃ† scaled killing rate L3#−1t−1

c0 scaled internal threshold concentration #L−3

c0† scaled internal threshold for survival #L−3

cd dissolved external concentration of toxicant #L−3

cT scaled internal tolerance concentration #L−3

cV scaled internal concentration of toxicant #L−3

e scaled reserve density (0-1) [−]
f scaled functional response (0-1), in control f0 [−]
g energy investment ratio, in control g0 [−]

ḣ0 background hazard rate for survival t−1

k̇e elimination or ‘dominant’ rate constant (at L = Lm) t−1

k̇M somatic maintenance rate coefficient, in control k̇M0 t−1

L structural body length l
L0 structural body length at start of experiment l
Lp structural body length at puberty l
Lm maximum structural body length, in control at f = 1 l
ṙB Von Bertalanffy growth rate, in control at f = 1 t−1

Ṙ reproduction rate #t−1

Ṙm max. reproduction rate (at f = 1, L = Lm), in control Ṙm0 #t−1

s stress factor (0 in control) [−]
v̇ energy conductance lt−1

Table 1: DEB model parameters used in this paper with their symbols, interpretation and
dimensions (# for numbers, L for length of environment, l for length of organism, t for
time).
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structural body length (L), scaled reserve density (e, scaled with the maxi-
mum reserve density in the control, and so between 0 and 1), and the scaled
internal concentration of the toxicant (cV , scaled with the bioconcentration
factor). A list of variables and parameters is given in Table 1. We strictly
follow the notation as laid down by Kooijman (2010), including the conven-
tion to use a dot above the symbol to indicate that a parameter is a rate
with a dimension that includes ‘per time’ (and thus not a derivative).

The differential equation for the scaled reserve dynamics is (t = 0 indi-
cates the start of the experiment):

d

dt
e = (f − e) v̇

L
with e(0) = 1 (1)

Here, f is the scaled functional response (1 indicates ad libitum food avail-
ability, 0 implies no food at all), and v̇ is the energy conductance, which
controls the rate at which reserves are mobilised. We assume that the ani-
mals that are used to start the experiment are from an ad-libitum fed culture,
and hence e(0) = 1. Including reserve dynamics does not require any addi-
tional parameters, but it does require an additional state variable, and thus
calculation time. If this is an issue, it can be assumed that e = f , which
is acceptable when f is constant or changes slowly, relative to the reserve
dynamics.

For structural length, the resulting differential equation is:

d

dt
L =

k̇Mg

3(e+ g)

(
e
v̇

k̇Mg
− L

)
with L(0) = L0 (2)

Here, k̇M is the rate coefficient for somatic maintenance (ratio of the volume-
specific maintenance costs and the cost for structure), and g the energy
investment ratio (the ratio between the energetic costs for structure and the
maximum potentially available energy for the soma). This equation reduces
to the Von Bertalanffy growth curve when the parameters are constant. Some
deviations from this growth pattern may in fact be experimental artefacts,
and can for example be included as a size-dependent food limitation (Jager
and Klok, 2010).

In DEB theory, L stands for structural length, which does not equal
physical body length. For isomorphs however, appropriate length measures
will be proportional to the structural length, and the proportionality can
be absorbed in the value of v̇. An appropriate size measure is one that is
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little affected by changes in reserve or the build up of a reproduction buffer.
Examples are the distance from the eye to the base of the spine in Daphnia,
and shell length in snails. The cubic root of body weight or volume can also
be treated as proportional to structural length, although these measures will
be more sensitive to changes in reserve and the build up of a buffer. Of
course, the contribution of buffer and reserve to the size measurements can
be included, at the cost of extra parameters.

For the reproduction rate Ṙ we end up with the following equation:

Ṙ =

{
0 if L < Lp

Ṙm

L3
m−L3

p

((
v̇

k̇M
L2 + L3

)
e

e+g
− L3

p

)
otherwise

(3)

Where Ṙm is the maximum reproduction rate (in the control, at maximum
food and maximum size), Lm is the maximum body length (in the control,
at maximum food), and Lp is the length at puberty (i.e., at the start of
reproductive investment). This equation yields a continuous reproduction
rate whereas in reality animals produce discrete offspring. We can add a
reproduction buffer to collect the reproduction flow, and allow only discrete
offspring. However, we can also work with the continuous rate and compare
the integrated reproduction to the observed offspring produced in an interval
(see Section 3.4).

Instead of the rather abstract k̇M and v̇, we can use the more intuitive
maximum length Lm and Von Bertalanffy growth rate constant ṙB (both in
the control at maximum food) as our parameters. These relate to the DEB
parameters in the control, which are indicated with an additional subscript
0 (k̇M0 and g0):

ṙB =
k̇M0g0

3(1 + g0)
and Lm =

v̇

k̇M0g0
(4)

Note that we do not consider effects on v̇ because that would affect the scaling
of reserve density e; v̇ therefore does not need a subscript. If g0 is given, we
can derive k̇M0 and v̇ as:

k̇M0 = ṙB
3(1 + g0)

g0
and v̇ = Lmk̇M0g0 (5)

The parameters k̇M0 and v̇ are thus calculated from Lm, ṙB and g0. This
brings the list of input parameters for the simplified DEB model to: L0, Lp,
Lm, ṙB, Ṙm0, g0, f0.
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2.3. Effects on toxicants on the energy budget

Toxicants need to be taken up into the body before they can exert their
effects. However, body residues are not routinely determined in toxicity tests,
and it is by no means certain that the concentration in the whole body is truly
representative for toxicity. Therefore, the internal concentration will play the
role of a hidden variable and its kinetics will be deduced from the development
of the toxic effects on the observed endpoints over time (see Jager et al.,
2011). The scaled internal concentration (scaled with the bioconcentration
factor) cV has the dimensions of an external concentration; in steady state,
the scaled internal concentration will equal the external concentration cd.
The scaling concept, and the derivation of Eq. 6, is explained in more detail
in the supplementary material.

Because we are dealing with growing organisms, the change in body size
needs to be accounted for in the uptake model. An increase in size leads
to dilution of the internal concentration, but also to a decrease in the sur-
face:volume ratio (we assume isomorphy). The exchange of the toxicant with
the environment is across a surface area, so this factor needs to be included
as well. The model for the scaled internal concentrations as a function of
body length L than becomes:

d

dt
cV = k̇e

Lm

L
(cd − cV )− cV

3

L

d

dt
L (6)

Here, k̇e is the elimination rate of an organism at the maximum size Lm;
smaller individuals will have a larger elimination rate. The last term in the
equation accounts for dilution of the internal concentration by growth. The
single toxicokinetic parameter k̇e has to be estimated from the effects data.
Survival data generally provide sufficient information to fit this parameter
(Jager et al., 2011), but its identifiability from sub-lethal data is often poor
(Billoir et al., 2008b). Equation 6 is the simplest toxicokinetics model that
accounts for a change in body size in a consistent manner, but this equation
can be replaced by more elaborate models if needed.

The defining principle of the DEBtox approach is that some internal
concentration affects the value of one or more parameters in a DEB model.
For the relationship between the scaled internal concentration and the stress
on a model parameter, we assume:

s =
1

cT
max (0, cV − c0) (7)
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Mode of action DEB parameters under stress
Assimilation from food f = f0 max(0, 1− s)
Somatic and maturity maintenance k̇M = k̇M0(1 + s), Ṙm = Ṙm0(1 + s)

Costs for structure and maturation g = g0(1 + s), k̇M = k̇M0(1 + s)−1

Overhead costs for making an egg Ṙm = Ṙm0(1 + s)−1

Hazard during oogenesis Ṙm = Ṙm0 exp(−s)

Table 2: Possible physiological modes of action for the simplified DEBtox model (combi-
nations of these 5 are also possible). Parameters that are not mentioned in the table for
a specific mode of action are set to their value in the control (e.g., f = f0, for all but the
first mode).

In this definition, s is a dimensionless indicator of the degree of stress on a
model parameter. Below the no-effect concentration c0, there are no effects.
When the scaled internal concentration exceeds c0 (the no-effect concentra-
tion), the stress function increases in a linear fashion. As cV has the dimen-
sions of an external concentration, so c0 and cT also have this dimension. The
c0 can thus be interpreted as the external concentration that does not lead
to exceedance of the internal threshold, even after prolonged exposure. To
use the simplified DEB model with toxicants, we thus add three parameters
to our list: ke, c0 and cT .

The choice for this particular relationship is partly for simplicity (it re-
quires only two parameters), but the use of a threshold has a more funda-
mental logic. We cannot expose an organism to a single toxicant in isolation;
all chemicals are toxic, and there will always be a multitude of unidentified
chemicals in the test medium and inside the organism. Invoking the thresh-
old concept, we can assume that all these unknown chemicals are below their
respective thresholds, and ignore their effects.

For effects on mortality, we could use the same scaled internal concen-
tration cV to link to a mortality mechanism such as stochastic death (see
Jager et al., 2011, for details). In that way, effects on mortality will have
their own toxicity parameters, but are linked to the sub-lethal effects because
they share the same internal concentrations.

Which model parameter will be affected by a toxicant? An effect on each
DEB parameter has specific consequences for the life-history traits, what we
can call a physiological mode of action (Alda Álvarez et al., 2006). Table 2
lists the physiological modes of action (i.e., the DEB parameter affected by
toxic stress) that we can invoke for the simplified model (see suppl. mat.).
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The actual model parameters are calculated from their counterparts in the
controls (with subscript 0) depending on the mode of action. We are limited
in the number of modes of action that we can apply, because we have to
insure that the length at puberty remains constant (the main assumption
for the simplification). For this reason, we have to increase somatic and
maturity maintenance costs by the same factor, and we have to increase the
costs for maturation when we increase costs for growth. Changing these
processes independently, or analysing effects through other parameters such
as κ, violates the assumptions behind the simplification and thus leads to
inconsistencies.

The set of equations presented here is essentially equivalent to those pre-
sented by Billoir et al. (2008b) for the case where reserve dynamics can be
ignored (e = f), under ad libitum food availability (f = 1), and working in
a scaled-length framework. Alternative simplified DEB models for toxicity
analysis have been published by Klok and De Roos (1996) and Muller et al.
(2010). Both approaches do not consider body residues, reserves and matu-
rity as (explicit) state variables and are therefore further reduced than the
model presented here (which includes toxicokinetics and reserve dynamics).
The work of Klok and De Roos was based on the original model of Kooijman
and Metz (a discussion of the differences can be found in Jager and Klok,
2010). The approach Muller and co-authors is closer to the model presented
here, although a different strategy is followed for the incorporation of toxic
effects.

2.4. Limitations of the simplified model

The simplified model as presented in the previous section has limita-
tions that need to be considered. The simplification rests heavily on the
constancy of the length at puberty and the egg costs. Whenever there are
indications in the experimental data that this condition is not satisfied, a full-
scale DEB model for toxicants (Jager et al., 2010) is appropriate. Adding an
ad hoc parameter to decrease Lp as a function of toxicant stress (as done in

Alda Álvarez et al., 2006) is not generally recommendable and may lead to
bias in the interpretation of the effects.

In this simplified model, we do not deal with the embryonic phase, and
also not with ageing. DEB theory (Kooijman, 2010) deals with these aspects,
but it remains to be investigated how these concepts are best translated to
the simplified model, and how toxicants can affect them. Also, we do not
explicitly consider starvation, which occurs when somatic maintenance costs
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cannot be paid from the mobilised reserves. Starvation implies a deviation
from the standard rules, which is probably species specific, and rapidly re-
quires a full-scale model.

3. Applying the theory in practice

3.1. Data needs

It is difficult to generalise the data needs for this simplified model. Weaker
data sets can still be analysed by making use of defaults, prior information,
or educated guesses. The weakness of a data set will be reflected in the con-
fidence intervals of the parameters. In general, the most appropriate data
would be (partial) life-cycle studies were body size, reproduction and survival
are followed from juvenile to fully-grown adult, with regular observations over
time. Such data provide the best opportunity to estimate all model parame-
ters, and allow for ecologically relevant predictions (see Section 4). Data for
body size alone over time can also be used effectively, reducing the model
even further (see also Kooijman and Bedaux, 1996a). The use of reproduc-
tion data without observation on body size is not generally recommendable.
Even though defaults may be used (see Kooijman and Bedaux, 1996b), it
may be difficult to select an appropriate mode of action. Effects on survival
alone can be analysed, as long as effects on body size can be ignored. In
that case, the simplified model reduces to the DEBtox version of the general
survival framework (GUTS, see Jager et al., 2011).

3.2. Selecting a mode of action

Energy fluxes in DEB are model abstractions and cannot be directly mea-
sured; we cannot measure maintenance fluxes or reproduction overheads.
These processes do, however, have consequences for measurable properties
such as body size and offspring production. Thus, we can infer the affected
process from the time patterns of effects on the endpoints. Each physiologi-
cal mode of action has specific consequences for the patterns of growth and
reproduction over the life cycle. Effects on assimilation and maintenance lead
to similar patterns with smaller ultimate body size, and delayed reproduc-
tion. These two modes are often difficult to distinguish without additional
observations (e.g., oxygen use). Increasing the costs for structure leads to
slower growth, but no effect on the ultimate body size, and also a delay in
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reproduction. The last two modes (costs for eggs and hazard during ooge-
nesis) lead to similar effects on reproduction only: no delay in the start of
reproduction, but only a decrease in reproduction rate.

In some cases, the data may strongly suggest one particular mode of ac-
tion, whereas in other cases several can provide an adequate explanation.
The estimation of an effect threshold (c0) does not seem to be very sensitive
to the choice of action mode (Kooijman and Bedaux, 1996b), but there can
be differences when extrapolating to untested conditions (e.g., food, tem-
perature), or for unobserved endpoints (e.g., feeding rates, oxygen use). If
the choice for an appropriate action mode matters, the only solution would
be to set up additional experiments, using model simulations to show where
alternative explanations will yield different predictions.

3.3. Statistical approach to fit the model

Fitting realistic models to realistic data sets is often a statistical minefield.
When we follow the same group of organisms in a test over time, the resulting
data will not be independent. The model predicts reproduction as a continu-
ous rate (e.g., number of eggs per day), whereas we observe discrete number
of offspring produced by one or more females in a time interval. Growth and
reproduction are graded endpoints (we measure the degree of response in ev-
ery individual), whereas survival is a quantal endpoint (we count the number
of surviving individuals over time; each individual is either dead or alive).
Clearly, these endpoints are not directly comparable, yet they share informa-
tion about the same underlying parameters, as all endpoints are linked. As
an additional complication, most of the deviation between model and data
is not caused by random measurement errors. This is a popular simplifying
assumption in statistics, but in reality these deviations will mainly result
from biological variation and, obviously, because the model is incorrect.

Given the complexity of this issue and the general quantity and quality of
the available data, we have to settle for a pragmatic approach. A likelihood
framework is our first choice, as it is powerful, general, and allows us to
combine the fits of all endpoints (quantal and graded) into a single value
to be optimised (Jager et al., 2004). For survival data, the multinomial
likelihood follows naturally (Bedaux and Kooijman, 1994; Jager et al., 2011,
see suppl. mat.). For graded endpoints like body size and reproduction, the
selection of an appropriate scatter structure is more troublesome. Here, we
will stick to the common assumption in regression analysis of independent
normal distributions for the error. Even though this assumption is almost
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always violated, more appropriate alternatives will often be too complex for
analysing basic toxicity data. Nevertheless, in our opinion, this is an area
that needs further consideration in the future.

Under the assumption of independent normal distributions with constant
variance σ2, the log-likelihood ` of the parameter set θ, given the data Y is:

`(θ, σ2|Y ) = −N
2

ln(2πσ2)− 1

2σ2
SSQ(θ;Y ) (8)

where N is the total number of data points, and SSQ the sum of the squared
residuals (worked out in the next section). There are two obvious ways to
simplify the likelihood equation. The first would be to select a value for σ2,
e.g., estimate it from the data set (see Billoir et al., 2008a). When σ2 is
constant, the first term of Eq. 8 does not depend on the parameters and can
be ignored (we only need to know the likelihood up to a proportionality):

`(θ|Y, σ2) = − 1

2σ2
SSQ(θ;Y ) + C (9)

Heteroscedasticity can be accommodated by an appropriate choice for σ2 for
different parts of the data set. Alternatively, we could also apply a trans-
formation for model and data in the calculation of the SSQ. For example,
log-transformation would be equivalent to taking a skewed error distribution,
with a variance that increases with the value of the endpoint.

In the second simplification, we use the method of profile likelihoods
to remove the error variance; i.e., replace this parameter by its maximum
likelihood estimate (Pawitan, 2001). The estimate for σ2 depends on θ, and
is the SSQ divided by the number of observations N . Replacing this estimate
in the likelihood function leads to the following simple result:

`(θ|Y ) = −N
2

ln SSQ(θ;Y ) + C (10)

Here, the error variance is taken homoscedastic, although appropriate trans-
formation of model and data in the SSQ can be used. Furthermore, it is
possible to use this equation on parts of the data set separately, and add the
resulting log-likelihood functions, which allows a different variance for each
part.

Both simplifications will yield the same best-fitting set of parameters,
when applied on a single data set. However, when combining different data
sets into the fit (e.g., body size and reproduction data), results can differ.
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Furthermore, both methods can yield different confidence intervals. The
profile likelihood is generally preferable unless we have a good estimate for
σ2 (Pawitan, 2001).

3.4. Deriving sums-of-squares

Replicated observations are represented as Yijr, where i is the time point
of the observation (from 1 to k), j the exposure concentration (from 1 to m),
and r the replicate individuals (1 to n). The number of observation times
may depend on the treatment (and thus kj), and the number of replicates
may depend on both time and treatment (and thus nij). The total number
of observations N is thus:

N =
m∑
j=1

kj∑
i=1

nij (11)

The sum-of-squares (SSQ) is calculated as:

SSQ(θ;Y ) =
m∑
j=1

kj∑
i=1

nij∑
r=1

(
Ŷij(θ)− Yijr

)2
(12)

If needed, we can modify the scatter distribution by transforming the model
predictions and the data, e.g., using log-transformation.

For reproduction, we need to compare the continuous reproduction from
the model to the discrete observations in the data. In previous analyses
(Kooijman and Bedaux, 1996b), both model and data were recalculated to
cumulatives over time, and the (weighted) SSQ determined. This cumulation
procedure, however, induces even more dependence in the data set. In our
opinion, a better approach is to compare the number of offspring produced by
an individual mother in an interval between t−1 and t, Yijr, to the integrated
reproduction rate over that interval:

SSQ(θ;Y ) =
m∑
j=1

kj∑
i=2

nij∑
r=1

(∫ ti

ti−1

Rj(τ, θ)dτ − Yijr
)2

(13)

But what do we do with the offspring produced when the mother dies in
the interval? We could throw away this observation, or divide the model
prediction by two (assuming that the mother died half-way in the interval).
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Often, we do not have the data for the individuals, but only the mean
of a number of replicates. For the first simplified likelihood (Eq. 9), we
can use means if we apply the correct error variance for that observation
(note that the variance of a mean is the variance of the replicates σ2 divided
by the number of replicates, nij). When the variance of the replicates is
known, the means carry the same information for the likelihood function as
the individual measurements, and we can simply exchange the SSQ in Eq. 9
with a weighted SSQ (see suppl. mat.):

wSSQn(θ;Y ) =
m∑
j=1

kj∑
i=1

nij(Ȳij − Ŷij(θ))2 (14)

For the second likelihood simplification (Eq. 10), the situation is some-
what more complex. The variance is optimised based on the data and the
model parameters, but information is lost when taking the means. In this
case, the log-likelihood function requires not only the weighted SSQ of Eq.
14, but also an SSQ weighted with n2 (see suppl. mat.):

`(θ|Y ) = −NY

2
ln(wSSQn2(θ;Y ))− N wSSQn(θ;Y )

2 wSSQn2(θ;Y )
+ C (15)

wSSQn2(θ;Y ) =
m∑
j=1

kj∑
i=1

n2
ij(Ȳij − Ŷij(θ))2 (16)

where NY is the number of means, whereas N is the total number of indi-
vidual data points on which these means were based (see Eq. 11). Note
that when nij is the same for all means, the second term of the likelihood
function is constant and can be absorbed in C. In that situation, means can
be treated like individual data points.

For reproduction tests, it is common that the adults are kept in groups. In
that case, we have to use the mean of the offspring produced. Problems occur
when one or more of the mothers die between observations. A pragmatic
solution would be to use the average number of adults to calculate the mean
reproduction, and to use as nij to weigh the SSQs analogous to Eq. 14 and
16.

3.5. Optimisation and confidence intervals

If multiple data sets share common parameters, we need to combine the
likelihoods for each data set into one overall likelihood. If the data sets are
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independent, we can take the product of the individual likelihoods, and thus
the sum of the log-likelhoods. Even though the assumption of independence
is also usually violated, we consider it a pragmatic simplification. This overall
log-likelihood can be maximised, and used to calculate confidence intervals
using profile likelihoods (see e.g., Pawitan, 2001) or applied in a Bayesian
framework (see e.g., Billoir et al., 2008a). In the absence of strong prior
information, a Bayesian calculation will generally produce results similar to
a likelihood approach. However, with the Bayesian framework, it is more
straightforward to calculate simultaneous credible intervals for multiple pa-
rameters, and to construct intervals around model predictions (e.g., Ashauer
et al., 2010). Because the assumptions regarding the scatter structure are
generally violated, the confidence intervals have to be regarded as approxi-
mate.

In many cases, the available data sets will be insufficient to accurately
identify all model parameters. In the original DEBtox approach (Kooijman
and Bedaux, 1996b), several parameter were fixed to default values for Daph-
nia magna. This allows working with results from standard toxicity tests,
which usually do not include determination of body size. Billoir et al. (2008a)
advocate a Bayesian approach, using informative priors for such parameters.

The simplified set of equations and the fitting procedure have been imple-
mented in Matlab R2010a. The complete series of scripts and functions can
be downloaded from http://www.debtox.info/. The log-likelihood func-
tion is maximised using a Nelder-Mead Simplex routine (fminsearch). For
Bayesian calculations, we implemented the slice sampler (slicesample) as pro-
vided in the Matlab Statistics Toolbox to yield a random sample from the
posterior distribution. Slice sampling is a Markov chain technique that is
efficient and easy to implement for routine application (Neal, 2003). This
random sample is subsequently used to calculate credible intervals for the
parameter estimates (as 2.5-97.5 percentiles of the sample from the poste-
rior distribution), and for model curves (as 2.5-97.5 percentiles of the model
values for each sample at each time point, see Ashauer et al., 2010).

4. Case study

To illustrate the model behaviour and statistical procedure, we take a
data set for Daphnia magna exposed to fluoranthene. Observations on body
size, offspring production, and survival are available over 21 days. This data
set is part of the mixture study published by Jager et al. (2010), who per-
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formed an analysis with a full DEB model and interpret the results in more
detail. The observations on body size were made on a separate group of ani-
mals, from which five animals were destructively sampled at each time point,
for each concentration. Because sampling was destructive, the assumption
of an error following independent normal distributions is defensible, and the
scatter structure does not reveal appreciable heteroscedasticity. For the ob-
servations on survival and offspring production, a different group of animals
was followed, starting at t = 0 with 10 animals in each treatment. Because
survival and reproduction over time were determined on the same animals,
independence is compromised. Another problem is that the animals do not
always produce a brood in each observation interval, which implies the reg-
ular occurrence of zeros in the data. Instead of trying to model this scatter
structure in detail, we decided to move it closer to normality by working
with the means for each time point and concentration. Observations for the
two controls were combined, and several parameters were fixed. The food
availability was assumed to be ad libitum (f = 1), initial size was fixed to
the mean observed size (because its error is likely much smaller than that of
the other observations), and the energy investment ratio g was fixed to the
value provided by Kooijman et al. (2008), as this parameters could not be
identified from this data set.

A more subtle issue is that reproduction in the model is the transforma-
tion of the buffer into eggs. For Daphnia, however, we count the release of
neonates from the brood pouch, which occurs several days later. We compen-
sate for this by shifting the observations in the comparison with the model
prediction by 2.5 days, which is a reasonable estimate for instar duration
(Nogueira et al., 2004).

In Figure 2, the maximum-likelihood fit of the model to the data is pre-
sented. The selected mode of action was an increase in the costs for producing
offspring. A hazard during oogenesis provides a worse, but still reasonable
fit. The other modes of action in Table 2 are unlikely as these are associated
with strong effects on body size, which were not observed. This does not
proof that the reproduction costs are indeed increased by fluoranthene, but
rather that this is the simplest explanation within the DEB framework that
is consistent with the observed effect patterns. More detailed studies in D.
magna (Barata and Baird, 2000) showed that fluoranthene affects both the
production of eggs as well as egg mortality during incubation in the brood
pouch. However, that study is not directly comparable as it showed substan-
tial effects on body size in contrast to our data set. Such differences in effect
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Figure 2: Fit of the simplified DEB model to data for Daphnia magna, exposed to fluo-
ranthene. Symbols are means for the concentration and time point; dashed lines are 95%
credible intervals on the model curves.

Parameter value 2.5-97.5 percentiles unit
f 1 n.e. [-]
g 0.422 n.e. [-]
L0 0.88 n.e. mm
Lp 1.67 1.39-2.03 mm
Lm 3.13 3.08-3.19 mm
ṙB 0.136 0.126-0.144 d−1

Ṙm 11.5 11.7-13.0 #d−1

ḣ0 2.42 0.821-8.61 10−3d−1

k̇e 0.0247 0.00742-0.0567 d−1

c0† 0.102 0.0285-0.238 µM

ḃ† 1.69 1.70-2.90 µM−1d−1

c0 0.0418 0.0136-0.0798 µM
cT 1.69 0.205-13.5 nM

Table 3: Results of the fit of the simplified DEB model on the dataset for D. magna exposed
to fluoranthene. Maximum likelihood estimates with approximate credible intervals (n.e.
means not estimated).
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(k̇e).

patterns may relate to genotypic differences between clones of this species,
or to differences in the experimental conditions.

The parameter estimates associated with the fit in Figure 2 are given in
Table 3. For the credible intervals, an MCMC sample from the posterior dis-
tribution was taken (5000 samples, a burn in with 1000 samples, and taking
every second sample), applying uniform (presumably uninformative) prior
distributions. This sample was used to calculate intervals for the parameter
estimates (Table 3), and to produce credible intervals on the model curves
(Fig. 2). Interestingly, the credible intervals for both no-effect concentrations
(Table 3, c0† for survival and c0 for sub-lethal effects) overlap. However, plot-
ting the samples from the posterior for these no-effect concentrations versus
the dominant elimination rate constant k̇e (Figure 3) clearly shows how dis-
tinct both parameter estimates actually are. Both thresholds are strongly
correlated to this rate constant.

The sample from parameter space can also be used to produce intervals
on model predictions. As an example, we provide an estimation of the intrin-
sic rate of population increase in Figure 4, as calculated from the parameters
in Table 3 (see Jager et al., 2004; Kooijman and Bedaux, 1996b, integrating
over 42 days; twice the duration of the study). This rate integrates the re-
sponses of all endpoints and their associated uncertainty into an ecologically
meaningful statistic. Here, we plotted the population growth rate normalised
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Figure 4: Population growth rate (intrinsic rate of increase), calculated from the model
parameters of Table 3, with 95% credible intervals for the model curve. Population growth
rate is normalised to the value in the control for each sample from the posterior.

to the rate in the control, which is probably most relevant. Figure 4 clearly
shows that despite the substantial confidence interval on the no-effect con-
centrations in Table 3), the model predicts very little effect of the compound
on the population, up to a concentration of about 0.2 µM. At higher concen-
trations, the predictions rapidly become very uncertain, reflecting the limited
information in the data set.

5. Conclusions

In this paper, we present a new and consistent set of simplified DEB
equations that can be used to interpret ecotoxicity test results. The full
derivation of these equations is presented in the supplementary material to
facilitate critical examination of our work. The simplification is appropriate
for situations where length at puberty and egg costs (and thus hatchling size)
remain constant. These conditions are probably met in many ecotoxicolog-
ical tests, making this framework a useful tool, at least as a first approach.
As an example, the analysis by Jager and Klok (2010) showed that the con-
clusions drawn from a simple DEBtox calculation can be quite comparable to
those of a full-blown DEB model. The statistical framework that we present
enables fitting the model to experimental data sets, and allows calculation
of intervals on parameter estimates, model curves and model predictions, as

21



illustrated with the case study. This statistical framework is certainly not
a perfect fit to the problem; in general, the available data will violate the
underlying assumptions for the scatter structure. However, we believe this
is a pragmatic solution to keep the analysis simple, although further study
is certainly needed.

The case study shows how this framework is applied to a real data set;
analysing all data simultaneously. Even though we used the popular test
species D. magna for our illustration, the model is by no means limited to
this species. Simplified DEB models have been successfully used to analyse
toxicity data for a range of species, including springtails (Jager et al., 2004),
nematodes (Alda Álvarez et al., 2006), earthworms (Jager and Klok, 2010),
and bivalves (Muller et al., 2010). We hope that the presentation of this
modelling framework, together with the detailed derivation and the available
Matlab code, increases the acceptance of such dynamic modelling approaches
in the field of ecotoxicology and ecotoxicological risk assessment.
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