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October 26, 2022

Contents

1 Model specification of the basic DEB model 3
1.1 Powers and state variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Initial values and egg costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Temperature correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Starvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 The abj-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 The TKTD module 13
2.1 Damage dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Stress, hazard and survival . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Modes of action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Auxiliary theory and statistics 18
3.1 Body size as length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Body size as wet weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Reproduction as eggs or neonates . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Miscellaneous issues 23
4.1 AmP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 DEBtool code for TKTD modelling . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Quick comparison to DEBtox2019 . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Derivation of initial values for eggs . . . . . . . . . . . . . . . . . . . . . . 26

*DEBtox Research, Stevensweert, The Netherlands (tjalling@debtox.nl, http://www.debtox.nl/)

1

http://www.debtox.nl/


5 Details for the case study 30
5.1 Details for the basic fit in main text . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Details for the toxicity fit in main text . . . . . . . . . . . . . . . . . . . . 31
5.3 Local sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Sensitivity as contribution to uncertainty in output . . . . . . . . . . . . . 36
5.5 Alternative model configurations . . . . . . . . . . . . . . . . . . . . . . . 38

2



1 Model specification of the basic DEB model

The standard deb animal model (hereafter, stddeb) is well defined [23, 34, 27], although
there is a broad diversity in how it is presented in various places. This relates to the
breadth of the theory and its applications; some are better served by a specific scaling or
parameters with a different unit. However, as a result, it is not so easy to identify the set
of equations in powers (energy flows in J/d) and volumetric length (in cm) as used for the
add-my-pet (AmP) library [30]. One of the few places where these equations are concisely
listed is the coffee mug handed out to the participants of the 2017 deb symposium in
Tromsø (Figure 1). This formulation forms the basis of the model description below.

Figure 1: The coffee mug from the Tromsø deb symposium, with the concise list of the
equations for the standard deb animal model.

The energy flows in the stddeb model are shown in Figure 2. Symbols for the basic
model (in absence of chemical stress) are explained in Table 1. The notation of deb theory
[23] is used in this document for the basic model. The tktd modules follow the notation
as used for the most-recent simplified deb-tktd model, referred to as debtox2019 [10].
This should not hurt much in this context, and maintains consistency with both standard
deb and debtox models. In the model definition, the ‘coffee mug’ formulation is followed,
with a few exceptions:

1. Volumetric length L is used as a state variable, rather than structural volume V .
However, this is a simple translation since L = V 1/3.
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2. Following reproduction rate Ṙ in eggs/day rather than as investment into a repro-
duction buffer ER. Note that the same is done for the AmP entries. The cumulative
egg production Rc is used as a state variable in the implementation.

3. Adding a parameter κH as a ‘maturation efficiency’. This parameter is set to 1 in
absence of stress, and then has no influence, but provides a handle to allow applying
a stress factor to maturation (see the technical background document for [9], and
[21]).

In the following sections, the model formulation is presented in detail. For the imple-
mentation in Matlab-byom (http://www.debtox.info/byom.html), and connection to
the tktd module, several decisions needed to be made that are related to specific proper-
ties of stddeb. These decisions are placed in boxes for emphasis.
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Figure 2: Schematic representation of the energy flows in stddeb, specified as powers (ṗ∗
in Joules per day). Node ‘b’ indicates birth, and node ‘p’ puberty. These switches are
triggered by specific threshold for maturity (EH).

1.1 Powers and state variables

Specification of the powers for stddeb (all in J/d), as shown in Figure 2:
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Symbol Explanation Unit Sugg. value
Primary parameters

TA Arrhenius temperature K 8000
{ṗAm} Maximum area-specific assimilation rate J/(cm2 d) 22.5 z
[ṗM ] Volume-specific somatic maintenance costs J/(cm3 d) 18
{ṗT} Surface-specific somatic maintenance costs J/(cm2 d) 0

k̇J maturity maintenance rate constant 1/d 0.002
[EG] Volume-specific costs for growth J/cm3 2800
Eb

H Maturity level at birth J 0.275 z3

Ej
H Maturity level at metamorphosis (for abj model) J −

Ep
H Maturity level at puberty J 166 z3

v̇ Energy conductance cm/d 0.02
κ Allocation fraction to soma − 0.8
κR Reproduction efficiency − 0.95
κH Maturation efficiency − 1

Parameters for starvation module
yP Product of two yield factors (for shrinking) J/J 0.64

Forcings, environmental conditions
f Scaled functional response − 1
Tref Reference temperature (20◦C) K 293.15
T Actual temperature K −

Conversions
dV Dry-weight density of structure g/cm3 −
δM Shape correction coefficient − −

Powers
ṗA Energy flux for assimilation J/d
ṗC Mobilised energy flux from reserve J/d
ṗG Energy flux for structural growth J/d
ṗJ Energy flux for maturity maintenance J/d
ṗR Energy flux to maturation or reproduction J/d
ṗS Energy flux for somatic maintenance J/d

State variables
E Reserve energy J
EH Cumulated energy investment into maturity J
L Volumetric body length cm
Rc Cumulated reproduction rate eggs

Table 1: Explanation of symbols for the basic model. Typical values for the standard
model, with a zoom factor z, at 20◦C, from [23] (Table 8.1). The zoom factor scales the
animal, its maximum volumetric body length being Lm = zLref

m with Lref
m = 1 cm.
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ṗA = f{ṗAm}L2 assimilation (1)

ṗS = [ṗM ]L3 + {ṗT}L2 somatic maintenance (2)

ṗC = E
[EG]v̇L

2 + ṗS
κE + [EG]L3

reserve mobilisation (3)

ṗG = κṗC − ṗS growth (4)

ṗJ = k̇JEH maturity maintenance (5)

ṗR = (1− κ)ṗC − ṗJ maturation/reproduction (6)

Specification of the state variables for stddeb under unstressed conditions:

d

dt
E = ṗA − ṗC reserve (7)

d

dt
L =

1

3L2

ṗG
[EG]

structure (8)

d

dt
EH =

{
κH ṗR when EH < Ep

H

0 otherwise
maturity (9)

d

dt
Rc = Ṙ =

{
0 when EH < Ep

H
κR

E0
ṗR otherwise

cumulative reproduction (10)

There is one non-standard symbol introduced above: κH . This is set to 1, so it does
not have an effect. However, this is required to have a parameter for the mode of action
‘costs of maturation’, since maturation can potentially be affected by toxicant stress (see
Section 2.3). This parameter was introduced in the technical background document for
the ‘debtox e-book’ [9] to have a counterpart in the 1 − κ branch for the mode of action
‘costs for growth’ (see also [21]).

It is important to note that the initial reserve in the fresh egg (E0) in Eq. 10 is not a
model parameter. It follows from the other parameters by the ‘maternal effects’ rule. This
rule states that the mother produces an egg with such a level of reserve that the embryo
hits the maturity level at birth (Eb

H) with a scaled reserve density (e) that equals the scaled
reserve density of the mother at egg formation. This implies that well-fed mothers produce
well-fed offspring, and that egg size will decrease with food limitation (or assimilation
stress) of the mother. This is a rather awkward rule, which requires awkward code to
implement (see next section). For each value of the parameters, we need to numerically
find the egg costs. Furthermore, this would need to be done continuously, as the mother’s
reserve density may fluctuate over time as a result of variation in food availability and/or
changes in assimilation or reserve mobilisation as a result of toxicant stress.

There is, however, little empirical support for this specific maternal effects rule as a
general rule for all animals. As reviewed by Bernardo [5], there are species that follow
this pattern, species that do the exact opposite (e.g., Daphnia magna, see [6]), and species
in which egg size does not seem to respond at all to changes in the mother’s nutritional
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status. The ‘stylised fact’ underlying this rule in stddeb [34] thus has plenty of exceptions.
Furthermore, the review of Bernardo points at the large variation in egg size for the eggs
produced by a single mother, even within a single clutch. Therefore, it is defensible to
deviate from this rule in a stddeb-tktd implementation. This issue is dealt with in more
detail in Section 1.2.

Some handy conversions to often-used compound parameters (see [27]):

e =
[E]

[Em]
scaled reserve density (11)

[Em] =
{ṗAm}

v̇
maximum reserve density (12)

k̇M =
[ṗM ]

[EG]
somatic maintenance rate constant (13)

g =
[EG]

κ[Em]
energy-investment ratio (14)

ṙB =
1

3

k̇Mg

e+ g
von Bertalanffy growth constant (15)

Lm = κ
{ṗAm}
[ṗM ]

maximum volumetric length (16)

1.2 Initial values and egg costs

For use as a deb-tktd model, we will often need to start the model at birth. Birth
takes place at a fixed maturity level EH = Eb

H , where Eb
H is a constant model parameter.

However, we do not know the value of the other state variables, length at birth Lb and the
reserve at birth Eb, before running the model. These states at birth depend on the initial
reserve in the egg E0, which is not a model parameter. Thus, the question of calculating
the costs of the egg E0 for the reproduction rate Ṙ (Eq. 10) is closely related to the
question of the initial states at birth, Lb and Eb.

The maternal effects rule of deb theory states that the egg costs are such that the
embryo will be born with the same reserve density that its mother had at the moment of
egg formation. If we know the model parameters, we can thus calculate the E0 that leads
to a certain reserve density e when EH = Eb

H . However, there is no explicit solution to
the odes for the embryo. Kooijman [22] provides a routine to solve the system to obtain
the initial amount of reserve, and the age and length at birth. This routine applies scaled
variables but still requires numerical procedures to solve. Rather than using this routine,
we here opt for simply simulating the (unscaled) model for the embryo. This is more
transparent and even allows for the possibility to add toxic effects or other dynamic stress
to the embryo stage in the future.

Trying to find an exact value for E0 and the states at birth, for every relevant reserve
density of the mother, would be extremely calculation intensive. Instead, we propose to
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work with a lookup table. For a given set of basic model parameters, we can simulate a
range of egg costs E0, and collect the relevant values at birth: eb, Eb and Lb. Note that
scaled reserve density is given by:

e =
[E]

[Em]
=

E

[Em]L3
=

Ev̇

{ṗAm}L3
(17)

For any given scaled reserve density e of the mother, we can thus interpolate in that table
to find the associated egg cost E0 to calculate the reproduction rate. The relationship
between E0 and e seems to be rather smooth (and close to linear), so interpolation will be
accurate (and even limited extrapolation should not be problematic). However, we need
to make sure that the table covers the relevant range of e values. This same table can
then also be used to look up initial values at birth for different data sets (with potentially
different f). This table only depends on the basic deb model parameters, and not on
the tktd parameters. Therefore, assuming that we calibrate the model in steps (fit basic
parameters first, and keep them fixed while fitting the tktd parameters), the table would
not have to be recalculated in the second step.

For the egg costs to calculate the reproduction rate, we need to consider how to apply
the maternal effects rule in detail. Most importantly, we decided to ignore the potential
impact of toxic effects on the developing egg for the egg costs. Egg costs are thus calcu-
lated using the unstressed values for the basic deb parameters. The alternative would be
unworkable, as it would require simulation of the tk and td of the egg over its develop-
ment, for each time point where we need to know the egg costs. Furthermore, it would
assume that the mother can anticipate the complex dynamics of the toxic effects over egg
development when producing an egg (see also discussion in [9], Section 3.2). This still
leaves some options for the implementation of the maternal effects rule.

Decisions 1: Do we apply the maternal rule strictly? If so, egg costs (E0) would vary

over the course of a toxicity test with scaled reserve density (e), and thus respond

to changes in f and toxicant stress (for some pMoAs). Alternatively, we could base

egg costs on f = 1, or use the f that was established for the specific data set. The

implementation in byom allows the user to select one of these three options. For the

case study, we base egg costs on the input value of f , and we suggest this as a default.

This implies that egg costs do not change over the course of the toxicity test, but will be

affected by the value for f that we select. The byom implementation does not consider

toxic effects on the embryo during egg development for the egg costs. Egg costs are

thus calculated using the unstressed parameter values.

For the starting values of a toxicity test, we need to think about the f of the mothers
that were used to spawn the eggs/neonates to start the test with. That value for f will
affect the egg reserve E0, and thereby the initial values at birth. We can either use a fixed
value here (e.g., f = 1) or the same value as used for the test.
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Decisions 2: For the initial values at birth, do we use f = 1 (eggs that start the

toxicity test originate from well-fed mothers) or the specific f for the data set? The

implementation in byom allows the user to select one of these two options. For the

case study, initial values are based on the f established for the data set, and we suggest

this as a default.

Starting the model at another point than the start of embryonic development or birth
requires additional simulations (for each choice of basic model parameters). If we want to
start at a certain length L(0) > Lb, we would need simulations to obtain the maturity level
EH(0) and the reserve E(0) at that new starting point. This required due consideration
for the code as there may be one or more life-cycle events between Lb and L(0) (i.e.,
metamorphosis and/or puberty).

Decisions 3: By default, the model analysis starts at birth. As additional option,

implemented in the byom package, the user can start at a specified physical length

L(0) > Lb. Any reproduction before L(0) is ignored, but any acceleration is included.

For the period between birth and the start of the experiment, the value of f for the

specific data set is used.

State Initial value embryo Initial value birth initial value post birth
E E0 Eb E(0)
EH 0 Eb

H EH(0)
L 10−6 cm Lb L(0)
Rc 0 0 0

Table 2: Initial values for the embryo simulations and for analysing toxicity-test data (from
birth). Note that the formulation of the ode for size in terms of body length implies that
we cannot use L = 0 as a starting value (as long as the value is very small, model results
will be insensitive to the exact value).

Simulating the embryonic stage is complicated by the fact that we don’t know how
long we need to simulate. Age at birth is not fixed but depends on E0. Furthermore,
we don’t know where to start looking for E0; we could use the AmP implied property
as starting values, but the ‘correct’ value for E0 will shift when we refit (some of the)
basic model parameters. We can obtain a useful starting point by looking at a special
case that can be solved analytically: assume that we have an infinitely large egg and that
maintenance costs can be ignored. How long does it take for the embryo to reach the
puberty threshold for birth, and how much reserve has it used? This question is solved
in Section 4.4. The resulting age at birth will be too short, and the reserve used will
underestimate E0. Nevertheless, it is a robust place to start the search.

1.3 Temperature correction

Temperature affects life-history traits, and especially so for ectothermic animals. In deb
theory, the default assumption is that all times and rate constants (all parameters with
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a dimension that includes ‘time’) scale in the same way with temperature. Temperature
thus stretches or compresses the time axis of the life cycle. We can use the Arrhenius
relationship to scale from a reference temperature Tref to the actual temperature T (both
in Kelvin). All physiological rate constants have to be multiplied by a factor FT :

FT = exp

(
TA

Tref

− TA

T

)
(18)

where TA is the Arrhenius temperature in Kelvin. Lika and co-workers [28] suggest a value
of 8000 K as typical value.

Note: it is currently unclear whether and how toxicological rate constants (i.e., kd and
bs) scale with temperature. In fitting the model, this only requires consideration if we com-
bine or compare data sets at different temperatures. However, this aspect becomes hugely
important if we want to extrapolate laboratory-observed effects to more field-relevant tem-
perature scenarios.

1.4 Starvation

Starvation is the situation where the energy allocated to the soma is insufficient to pay
somatic maintenance costs. Under these conditions, the animal would need to change its
allocation rules (temporarily). The response to starvation is highly species specific, and
no ‘standard’ deb module is available. For ecotoxicology, a starvation module is needed,
especially under pulsed exposure (see [10]), since toxicant stress can induce starvation,
even under abundant food availability. We here suggest implementing the same module
as for the debtox2019 model, for simplicity, and for the sake of consistency between both
model approaches. However, other strategies can be included while keeping the structure
of stddeb-tktd intact.

Under starvation (when ṗG < 0), assume that a starvation response is triggered that
includes three stages [12].

Stage 1 As long as ṗC > ṗS + ṗJ , the additional flux needed to pay ṗS is taken from ṗR.
Growth stops ( d

dt
L = 0). Maturity maintenance is thus being paid, and some maturation

or reproduction is possible with whatever remains after both maintenance fluxes are paid.
Effectively, this implies a change in κ, just enough to pay somatic maintenance, but without
change in reserve mobilisation.

ṗR = ṗC − ṗJ − ṗS (19)

ṗG = 0 (20)

Stage 2 As long as ṗC ≥ ṗS, the additional flux needed to pay ṗS is taken from ṗR.
Growth stops ( d

dt
L = 0). Maturity maintenance can not be fully paid anymore, but gets

what’s left in the 1− κ branch. No maturation or reproduction anymore.
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ṗR = 0 (21)

ṗJ = ṗC − ṗS (22)

ṗG = 0 (23)

Stage 3 When ṗC < ṗS, the animal will pay somatic maintenance from structure (shrink-
ing) and ṗR = 0. Maturity maintenance is no longer paid. Shrinking comes with a certain
efficiency, but the growth overheads cannot be recovered. Assuming that the yield for
growth and shrinking can both be taken as 0.8, we thus get a total factor of 0.64. This can
be implemented as an increase in ṗG, even though it mechanistically acts as a decrease on
the growth costs [EG] (which, under starvation, gets a different interpretation). A unit of
structure costs [EG] Joule to build, of which a part is overhead costs. A fraction yV E of
those costs are actually retained in the biomass; the fraction 1− yV E is lost and cannot be
recovered under shrinking. When burning this unit of structure to pay maintenance, we
again have to pay overhead costs yEV . So we can regain a fraction of the invested energy,
equalling the product of these two yields (yP = yV EyEV ), for maintenance work.1 Note
that ṗG is now negative.

ṗR = 0 (24)

ṗJ = 0 (25)

ṗG =
ṗC − ṗS

yP
(26)

An individual cannot shrink indefinitely, so some limit to shrinking may be necessary (or
shrinking should increase the hazard rate, see Section 2.2). However, treatments that
induce strong starvation should be treated with great care, or may even be excluded from
the tktd analysis. Given the uncertainties about the actual starvation strategy of a
species, and given the potential for interaction with tk and td, it is likely that more
complex models need to be considered in case that severe starvation is relevant for the
question at hand.

These rules have the consequence that animals will shrink even though there is still a
considerable amount of reserve present. However, an ad hoc increase in reserve mobilisa-
tion under starvation seems unrealistic, given the surface-specific mechanism proposed for
reserve dynamics (see [29]). The reserve plays a somewhat awkward role in the starvation
process, since adults can make less use of it than juveniles (see [35]). A fully-grown adult,
raised on a constant f , will hit the starvation point as soon as f decreases a tiny bit, since
all of the energy allocated to soma is already needed for somatic maintenance. A juvenile
has the possibility of decreasing growth, and thereby can pay somatic maintenance under
food limitation for longer, without deviating from the rules.

1The product [EG]yP is the joules of energy for paying maintenance, that can be obtained by burning
a cm3 of structure.
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Decisions 4: At this moment, the starvation module is set up analogous to that for

debtox2019. Reserve mobilisation is not affected under starvation; the required energy

for somatic maintenance is taken from the 1 − κ branch, and if that is insufficient,

from burning structure. Starvation does not lead to increase in the hazard rate, nor

to rejuvenation (i.e., decrease in EH). Maturity maintenance can be reduced (even to

zero) without consequences for the individual.

We propose this strategy as the default situation for stddeb-tktd. However, for specific
species, specific starvation strategies may be outlined. The stddeb framework offers more
flexibility for defining starvation strategies than the simplified and compound-parameter
formulated debtox2019.

Note that, in stddeb-tktd, we do not (yet) consider the reproduction buffer. If such
a buffer would be included, it would make sense to modify the starvation rules, such that
the buffer (before its contents are irreversibly allocated to eggs) can be used to cover
maintenance needs. A simple modification would be to continue the Stage 1 rule as long as
there is reserve in the reproduction buffer. We can allow ṗR to become negative, such that
the buffer decreases. This is equivalent to the rules suggested for the debkiss framework
([12], Section 4.1.1).

1.5 The abj-model

Some species accelerate their growth over the initial part of the life cycle. Several possible
causes for such accelerating growth curves can be put forward within a deb context [24, 26].
One of these scenarios involves a period of V1-morphic growth between birth and a maturity
level in between birth and puberty, termed ‘metamorphosis’. For a V1-morph, surface area
scales with volume to the power 1, rather than a power of 2/3 for the standard model. Two
parameters of stddeb depend on the surface:volume ratio, namely {ṗAm} and v̇. These
parameters thus need to be multiplied by a factor δ that depends on length for a certain
period of their life. A practical implementation is as follows:

δ =


1 if EH < Eb

H

L/Lb if Eb
H ≤ EH < Ej

H

Lj/Lb if EH ≥ Ej
H

. (27)

v̇ → δv̇ (28)

{ṗAm} → δ{ṗAm} (29)

A problem with these equations is that Ej
H is a constant model parameter, but scaling

of v̇ and {ṗAm} requires knowledge of Lj. The Lj is not generally constant, as it will
depend on food level f and can change with chemical stress. The only solution that we
see is to simulate the model from birth to metamorphosis, stop the model, collect Lj and
restart the model with Lj as input for the remaining part of the time vector. This is the
solution that is implemented in the byom package.
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The acceleration requires some thought when shrinking can occur. An animal may
shrink below the size at metamorphosis again. We propose to have this metamorphosis
only once. If an animal shrinks below Lj again, there will be no new acceleration phase.
However, for some species and some data sets, it may be needed to deviate from this rule.

Decisions 5: Metamorphosis and puberty can occur only once in the life time of an in-

dividual. Shrinking below Lj (or rejuvenation below Ej
H) does not trigger deceleration;

shrinking below Lp does not turn the adult into a juvenile. After a shrinking episode,

continuing growth beyond Lj or Lp does not trigger a new life-stage event. This is

incorporated in the byom implementation by not allowing EH to decrease.

It is good to note that the standard model is nested within the abj-model: the standard
model is derived by setting Ej

H = Eb
H . In the byom code, acceleration is disabled by

setting Ej
H = 0, as Eb

H may be re-fitted.

2 The TKTD module

The tktd module is lifted from debtox2019 [10]. Additional symbols are explained in
Table 3. The notation of this module here follows [10], so without the dot above symbols
for rate constants.

2.1 Damage dynamics

For debtox2019, a flexible damage configuration was proposed for reduced models2, with
the following generic equation for scaled damage:

d

dt
Dw = kd(xuCw − xeDw)− (xG + xR)Dw (30)

In this equation, the feedback processes can be modified by setting the four factors x∗ to
an appropriate value. Note that there are separate factors xu and xe for surface:volume
scaling of uptake (or damage accrual) and elimination (or damage repair), respectively.
Growth dilution and losses through reproduction each have their factor (xG and xR) that
work in the same way (as an ‘elimination’ process, which is why they can be added).

The factors x∗ should receive very specific values when the associated process is deemed
relevant, and those values will change over time. A practical implementation is to use a
vector X with four switches: set to 1 when a feedback process is included, and 0 when it
is excluded. The specific factors x∗ of Eq. 30 can then be derived in the following manner:

[xu, xe, xG, xR] = X ◦
[
Lm

L
,
Lm

L
,
3

L

d

dt
L, Ṙ FBVKRV

]
(31)

if X(1) = 0 then xu = 1 if X(2) = 0 then xe = 1 (32)

2In reducedtktdmodels, toxicokinetics and damage dynamics are lumped in a single compartment with
first-order kinetics. In so-called full models, separate modules for toxicokinetics and damage dynamics will
be used. See also Figure 2 in [10].
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Sym. Explanation example unit
Toxicity parameters

kd dominant rate constant 1/d
S switch vector for configuring pMoA [-]
X switch vector for damage feedbacks [-]
zb effect threshold sub-lethal effects mg/L
bb effect strength sub-lethal effects L/mg
zs effect threshold lethal effects mg/L
bs effect strength lethal effects L/mg/d
hb background hazard rate for lethal effects 1/d

Additional State variables
Dw scaled damage level mg/L
S survival probability [-]

Additional intermediate variables
x∗ specific feedback process for process * [-] or 1/d
s stress level [-]
s∗ specific stress level for process * [-]
h hazard rate for lethal effects 1/d
Additional parameters for losses with reproduction

KRV partition coefficient egg-(total) body 1 g/g
FBV egg dwt, relative to mother’s (total) dwt g/g

Forcing functions
Cw external concentration mg/L

Table 3: Symbols used in the tktd and survival module. The choice of unit for the external
concentration affects the units of other parameters as well (the ones with mg and L in their
units). This choice is up to the user. However, it is strongly advised to keep ‘days’ as the
unit for time. This is especially needed when using the parameter-space explorer in byom,
since the default search ranges assume that the time vector is in days. The AmP library
also uses days as the standard.

The circle stands for element-wise multiplication (Hadamard product). For example, the
factor for growth dilution (xG) is derived by multiplying the third element of X (either 0 or
1) with the third element of the right-hand vector in Eq. 31 (the relative volumetric growth
rate). The vector on the right-hand side of Eq. 31 contains the standard formulations for
surface:volume scaling and growth dilution [20].

The Lm that is needed in this relationship, could, in principle, be calculated from the
model parameters. However, we may want to calibrate on multiple data sets, with slightly
different parameters, or compare the calibrated model parameters to a validation data set.
Clearly, the scaling should not lead to different values of the rate constants for individuals
that have the same size (even though their maximum size differs). Therefore, it makes
sense to use a fixed reference length for Lm in this relationship. The additional rules in
Eq. 32 are needed since the factors xu and xe need to be set to 1 to drop out of Eq. 30.
In [10], a ‘max’ operator was used here, minimising xu and xe to 1. That works as long
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as L is always smaller than Lm. However, if a reference Lm can be set by the user, and
basic parameters re-fitted, it is safer to explicitly make these factors one when they are
not needed.

Using the same damage module for stddeb-tktd, as is, leads to a somewhat awkward
mechanistic interpretation, as only the state variable L for structural length is used for
the feedbacks, and reserve is ignored. For readability of the list below, we here take the
perspective of a case where an internal concentration drives the toxic effect (fast damage
dynamics), although the same issues arise for the case where damage drives toxicity. The
list of interpretation issues:

1. When uptake and/or elimination scales with a surface:volume ratio, this ratio is based
on structural body volume only. This would hold if there is no toxicant present in
the reserve, and toxicant exchange takes place via a structural surface area. It also
holds when the toxicant is evenly distributed over structure and reserve (such that
the concentration in both is the same), equilibration between structure and reserve
is instant, and exchange takes place across a surface area that relates to the total
body surface (so including the contribution of reserve). It also holds, approximately,
when the reserve makes up only a very small fraction of the total body volume.

2. When there is dilution by growth, only the changes in structural body volume apply.
Changes in reserve mass do not affect the internal toxicant concentration. This holds
if there is no toxicant present in the reserve at all, but also in the case where reserve
density is constant and equilibration between structure and reserve is instant. At a
constant reserve density, the relative change in structural volume equals the relative
change in total volume.

3. Any V1-acceleration (see Section 1.5) does not affect the scaling of the rate constants.
In other words, the scaling with L is maintained, even though one could argue that in
V1-morphs, there should be no scaling since surface area is proportional to volume.
However, metabolic scaling does not necessarily imply changes in morphology.

An even distribution of a chemical across structure and reserve (as in issue 1 above) is
perhaps not such a stretch of the imagination, as reserve has almost the same properties
as structure in AmP entries (mainly reflecting the defaults used).

The losses with reproduction require some further consideration for stddeb. Since eggs
are treated as ‘wrapped reserve’, the interpretation that all toxicant is associated with
structure would be troublesome to reconcile with this feedback mechanism. If there is
no toxicant in the reserve, it also cannot be eliminated via egg production. Note that in
debtox2019, two new parameters were introduced to include losses with reproduction: the
egg dry weight as fraction of the mother’s dry weight (FBV ), and a partition coefficient
for the chemical (or its damage) between egg material and structure (KRV ). The V in the
subscript refers to structure. This was appropriate for debtox2019 as all biomass is treated
as structure in debkiss-derived models. However, for stddeb-tktd, these parameters
require some more thought. Given the uncertainty about how the toxicant (and its damage)
is distributed over structure and reserve, we for now propose to refer these parameters to
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the total body mass. Therefore, FBV would be the dry mass of an egg, relative to the total
dry mass of the mother. And KRV the partition coefficient between the egg biomass and
the total dry mass of the mother.

By default, we can set KRV = 1, which implies that eggs will have the same chemi-
cal/damage density as the mother’s body. For stddeb-tktd, we can set FBV to a reason-
able constant for the species, just as done in debtox2019. The AmP implied properties
could help with that. However, in stddeb-tktd, we have direct access to the amount of
reserve and structure, both in the mother and in the egg. Therefore, FBV could also be
calculated as function of time, using conversions of the state variables to wet weight (see
Section 3.2). It seems, however, that such a detailed calculation would not add much in a
tktd analysis. Therefore, this is not (yet) implemented in the byom package. However,
for cases where losses with reproduction is identified as an important feedback mechanism,
due care is needed as the model formulation for this process is approximate at best.

TK/damage representation X
Fast damage repair
Classical DEBtox (no losses with repro) [1,1,1,0]
Activated chemical, no losses with repro [0,1,1,0]
Detoxified chemical, no losses with repro [1,0,1,0]
Slow damage repair
Damage is diluted by growth [0,0,1,0]
Damage is not diluted by growth [0,0,0,0]

Table 4: Some example settings for the vector with switches X in the reduced damage
model. For fast damage repair, toxicokinetics will drive the toxic effects, whereas with
slow damage repair, it will be the damage dynamics. The vector X =[0,0,0,0] is proposed
as default.

Decisions 6: The tktd module strictly follows the structure of the simplified model.

Thus, reserve is ignored for damage dynamics; all feedbacks are based on structural

length L. For losses with reproduction, we likewise implement a fixed factor FBV ,

set to a not-unreasonable value. This should suffice to explore the importance of this

feedback route. These choices can easily lead to logical inconsistencies in the model

interpretation, but alternatives require further study (and will likely require more pa-

rameters).

More elaborate tk models have been proposed for deb models, allowing the toxicant
to partition over structure and reserve (see, e.g., [36, 2] and the technical background
document of [9]). This allows for a fully consistent tk module, and is very relevant when
the toxicokinetics of the parent compound is driving the toxic effect. However, when
biotransformation plays a role, and even more so when damage dynamics is driving the
toxicity, such a partitioning is less obvious. Furthermore, it is not clear whether such
extensions would be testable in principle, and whether they would be essential for the
analysis of ecotoxicity data. Therefore, we refrain from a priori including them into the
model for now.
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2.2 Stress, hazard and survival

The stress function takes the damage level Dw, as established from the toxicokinetics and
damage-dynamics module from the previous section, and translates it into dimensionless
stress. This stress is defined such that a stress level of zero implies no stress.

s = bbmax(0, Dw − zb) (33)

This is the same equation as applied in classical debtox models, with one modification:
the ‘tolerance concentration’ is replaced by its reciprocal (which is now an effect strength
bb). This change was introduced with debtox2019 [10] to have a similar interpretation as
bs for survival effect (although the units will be different).

The hazard rate due to toxicant stress is calculated in an analogous fashion:

h = bsmax(0, Dw − zs) (34)

The survival probability requires its own state variable S. We do not use the deb ageing
module here (see [23], Section 6.1). Therefore, only a descriptive background hazard hb is
considered:

d

dt
S = −(h+ hb)S with S(0) = 1 (35)

Normally, hb is taken as constant. However, there will be cases where background mortality
increases over time. We can therefore extend hb to include a Weibull pattern over time:

hb(t) → a ha
b t

a−1 (36)

When a = 1, the regular constant background mortality emerges. For a > 1, background
mortality increases over time. This is a descriptive model extension to provide a better fit
to control data in some cases.

Note that we here, following debtox2019 [10], only consider stochastic death as a death
mechanism, and ignore the alternative of individual tolerance [13, 15]. The reason lies in
consistency with the sub-lethal effects. For effects on growth and reproduction, we do not
consider differences in sensitivity between individuals. All individuals are identical, and
damage above a threshold increases or decreases a deb model parameter. A pure individ-
ual tolerance approach would be illogical for growth and reproduction, as it implies that
each individual is either growing/reproducing at the control rate or not at all (individual
tolerance does not allow for gradual responses). A mixed model can be proposed, where
the effect is graded while individuals also differ in their threshold value. However, we will
not often see data sets that are strong enough to parametrise such a model. Furthermore,
individual tolerance will then cause substantial difficulties for implementation and inter-
pretation: when sensitive individuals die because of the treatment, less-sensitive animals
remain, which then leads to an increase in the mean growth and reproduction rates. Such
a model would thus require something like an individual-based modelling approach. We
therefore consider stochastic death to be the most logical and consistent death mechanism
for deb-based tktd analysis.
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2.3 Modes of action

The modes of action will be defined analogous to those for debtox2019. Even though
more pMoAs can be defined for stddeb (e.g., a change in κ [19]), we will stay close to
the classical debtox formulation [25] here. Note that maturation costs are here included
with the pMoA for growth costs. The reason is to keep this pMoA close to how it works in
debtox2019. In debtox2019, length at puberty is constant, which is not the case in stddeb
(only for a specific choice of k̇J). Increasing growth costs alone will decrease the length at
puberty (building structure becomes more expensive, relative to maturing). To limit this
change in puberty length, we propose to let maturation costs be modified by growth stress
to the same extent (see [9], Section 3.2). For similar reasons, maturity maintenance has
been coupled to somatic maintenance. For the stddeb model, these links are not necessary,
but using them as defaults ensures consistency with the simplified models.

Specific stress factors s∗ follow from this vector S and the value for s from Eq. 33:

[sA, sM , sG, sR, sH ] = s× S (37)

sA → min(1, sA) (38)

The specification of this vector is illustrated in Table 5. The extra operation on sA,
maximising its value to 1, is needed as sA will be applied in the form of a linear decrease
of a parameter (which should not become negative).

pMoA S change in target parameter(s)
Assimilation or feeding [1,0,0,0,0] {ṗAm} → (1− sA){ṗAm}
Maintenance costs [0,1,0,0,0] [ṗM ] → (1 + sM)[ṗM ], k̇J → (1 + sM)k̇J
Growth/maturation costs [0,0,1,0,0] [EG] → (1 + sG)[EG], κH → κH/(1 + sG)
Reproduction costs [0,0,0,1,0] κR → κR/(1 + sR)
Hazards to embryo [0,0,0,0,1] κR → exp(−sH)κR

Table 5: Examples for how the switch vector S can be used to create standard pMoAs.
The same pMoAs were defined for debtox2019, and the table shows their analogues for
stddeb-tktd. Note that the pMoAs can easily be combined by putting more than one 1
in S.

3 Auxiliary theory and statistics

Auxiliary theory deals with the translation of the (rather abstract) state variables of the
model to real-world observable properties. Statistics deals with the evaluation of the differ-
ences between the model output and the observed properties. Both are essential elements
of model application, but quite separate from the basic model formulation.

18



3.1 Body size as length

In many cases, body size is determined as an actual body length. The state variable L,
however, is a volumetric length (cubic root of structural volume). We can convert L into
a physical length Lw with a shape-correction coefficient:

Lw =
L

δM
(39)

The coefficient δM depends on which actual length measure is taken; in any case that
measure should not be influenced by reserve density. Further, δM is generally assumed to
be constant, which implies that the species does not change in shape over ontogeny. For
some species, taking δM as function of size or developmental stage is appropriate (see e.g.,
[17]).

3.2 Body size as wet weight

We may encounter cases where body size is measured as volume or wet weight (or even
dry weight). These measures are generally more robust, but add a complication for the
calculations. Since volume and weight have contributions from structure as well as reserve
(unlike length, which can often be assumed to be determined by structure only). Fur-
thermore, the reserve state variable is followed in terms of energy, which then has to be
translated to volume or weight.

If we can ignore the contribution of a reproduction buffer to body volume, we can sum
the contributions of structure and reserve (see [23], Page 81):

Vw = L3(1 + ωV e) with ωV =
[Em]

dE

wE

µE

(40)

Scaled reserve density e relates to unscaled reserve according to:

e =
E

[Em]L3
(41)

With these equations, the state variables L and E can thus be combined into a total body
volume Vw. We can translate this into wet weight by assuming a wet-weight density of 1
g/cm3, and into dry weight by using the dry-weight density dV .

These equations include several conversion parameters. Looking at the AmP entries,
we can see that the density of reserve often equals the density of structure, so dE = dV .
This reflects the suggested defaults [28], since data sets only rarely contain the information
necessary to determine these parameters. We can calculate the molecular weight of the
reserve wE from the chemical indices for carbon, hydrogen, oxygen and nitrogen in reserve,
and the molecular weights of these elements. The chemical indices seem to be the same for
most AmP entries, following the standard animal (1:1.8:0.5:0.15, see [28]). The chemical
potential of reserve also does not seem to change between entries, but that value is slightly
different from that in [28].

If we do not start the model simulation at birth, it would be handy if the user can
specify the initial body size in volume or wet weight as well. Within the model code,
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Symbol Explanation Unit Sugg. value
Conversions

dE Dry-weight density of reserve g/cm3 dV
dV Dry-weight density of structure g/cm3 −
wE Molecular weight of reserve g/C-mol 23.9
µE Chemical potential of reserve J/C-mol 550 · 103

Model output
ωV contribution of reserve to volume −
Vw total volume cm3

Table 6: Explanation of additional symbols when using body volume or weight as model
ouptut for the basic model. Note that wE is calculated from the chemical indices for reserve
and the molecular weights of the elements.

this then needs to be translated into an initial volumetric length, which remains the state
variable in the model. From Eq. 40, we can derive the initial volumetric length from an
initial value of body volume:

L(0) =

(
Vw(0)

1 + ωV e

)1/3

(42)

Here, we need to make an assumption for scaled reserve density e at the start of the
experiment. Since we do not start at birth, we cannot use eb from the maternal effects rule.
In fact, we need to assume something about the food level that the organism experiences
between birth and the start of the experiment. This was already done with ‘Decisions 3’ In
Section 1.2, where we assumed that the animal experiences a constant food level of f (the
same value as assumed for the experiment) between birth and the start of the experiment.
The only additional assumption would be that the time between birth and the start of
the experiment is long enough for the animal’s reserve to reach steady state with the food
density, so e = f .

Decisions 7: To translate a user-supplied initial body volume (or wet weight) into an

initial volumetric length (the state variable), assume that scaled reserve density at the

start of the experiment equals scaled food level (e = f).

The same relationships can also be used to translate the energetic egg costs E0 to an
egg volume or wet weight Vw0:

Vw0 = E0
wE

dEµE

= E0
ωV

[Em]
(43)

This result could also be used for the feedback ‘losses with reproduction’ to calculate FBV

continuously as Vw0/Vw.
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3.3 Reproduction as eggs or neonates

The state variable for reproduction in the model is the continuously cumulated egg pro-
duction, implying instantaneous translation from the investment flux ṗR into eggs. In
reality, egg production from invested reserve will take some time, and many species will
collect the investment over some time period to spawn a clutch of eggs. It is possible to
expand deb models with a reproduction buffer, collecting the investment ṗR until spawning
(e.g., [2, 32]). However, this requires another state variable, rules for spawning (also under
stress), rules for potential use of reproduction buffer under starvation, consideration of the
reproduction buffer in tk and body weight, and more complexity in the code (due to the
discontinuities in the model at spawning). Furthermore, the AmP entries currently do not
consider the reproduction buffer and, therefore, their values cannot be used in a model that
includes such a buffer. Therefore, we have not (yet) included a reproduction buffer into
the current model formulation. However, clutch-wise spawning has the potential to lead to
bias in model analyses [18], especially for pulsed exposure. The reason is that rapid effects
on reproduction will be delayed by the reproduction buffer. The dynamics of the effects on
egg production are not directly representing the dynamics of the effects on the energy flux
ṗR. Furthermore, it is good to realise that the time resolution of reproductive observations
is limited by the spawning cycle; the time points were no reproduction is observed basically
carry no information on the investment into reproduction.

Many aquatic invertebrate test species do not release an egg clutch, but incubate the
eggs in a brood pouch (e.g., cladocerans, amphipods and mysids). The eventual neonate
release is then scored as ‘reproduction’. This causes an additional delay between effects on
reproductive investment and the observed reproduction that needs to be considered [18].

3.4 Statistics

The statistical framework that we propose follows the work laid down for simplified models
[20]. Therefore, the subject is treated here in a cursory manner only. Furthermore, other
statistical frameworks can be used, without changes to the basic model structure (see e.g.,
[31]).

Likelihood functions are drawn up for each endpoint, and combined assuming that the
endpoints are independent. For survival, the multinomial distribution is used to design
the likelihood function [4, 13, 15]. This is an appropriate distribution for the data, as the
data are for a single discrete (irreversible) event in the individual’s life. The log-likelihood
function for a parameter set θ and a data set X is (first considering a single exposure
treatment Cw):

ℓ(θ|X) =
∑
i

xi ln pi(Cw, θ) (44)

The individual observations for each time interval between observations i are denoted as
xi (the numbers of deaths in interval i). The (unconditional) death probability for each
interval is pi. The unconditional death probabilities can be calculated from the model
output for survival probability at the start of each interval, and the observed deaths follow
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from the observed number of survivors at the start of each interval. The log-likelihood
contributions from each treatment can be summed as they are independent.

For continuous endpoints, we use the general likelihood function as proposed by [20],
following from the normal distribution. The log-likelihood ℓ of a parameter set θ, given
a data set Y with N individual observations, can be calculated from the sum-of-squares
(SSQ) as follows:

ℓ(θ|Y ) = −N

2
ln SSQ(θ;Y ) + C (45)

SSQ(θ;Y ) =
N∑
i=1

(
Ŷi(θ)− Yi

)2
(46)

Where C is a proportionality constant that can be ignored, since we only need to know the
likelihood up to a proportionality (all inference is based on likelihood ratios). Furthermore,
note that Ŷi(θ) is the model prediction for the data point Yi. This likelihood function
follows from a series of assumptions. Most importantly, it assumes that the residuals
follow from independent normal distributions with a constant variance. Independence is
often violated in practice as we follow the same cohort of individuals over time, and also
because reproduction is cumulated over time. Note that in deriving this likelihood function,
residual variance is treated as a nuisance parameter and is ‘profiled out’ (in effect, it is
estimated from the data). This has the advantage that the likelihood function does not
require any additional parameters to be fitted from the data. Furthermore, the normal-
distribution based likelihood function above assume that individual replicates are used as
observed values. Jager and Zimmer [20] also provide approximate likelihood functions for
the case where means are to be fitted.

Transformation of model and data can be used to bring the residuals more in line with
normality and homoscedasticity. Log-transformation would lead to the following SSQ:

SSQ(θ;Y ) =
N∑
i=1

(
ln Ŷi(θ)− lnYi

)2
(47)

Log-transformation places more emphasis on small values for the observed endpoints. For
example, compared to non-transformation, log-transformation for body size will result in
a model fit with a closer correspondence to the observations on small individuals, at the
expense of the observations on large individuals. Since residual variance tend to increase
with the mean, this generally works in the right direction. However, log-transformation
may be too strong, and lead to poor fits for large individuals. Square-root transformation
offers a milder form of transformation:

SSQ(θ;Y ) =
N∑
i=1

(
Ŷi(θ)

1/2 − lnY
1/2
i

)2
(48)

Similarly, we can use other power transformations, when deemed appropriate. These trans-
formations are offered in byom, in the form of the flexible Box-Cox transformation, and
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can be set individually for each set of observations (e.g., a different transformation for body
size data than for cumulative reproduction data).

For the case study in the main text, an additional constraint was used in the fit, in the
form of a zero-variate data point for the egg dry weight. This data point was provided
with a normal distribution with a certain mean µ and standard deviation σ. For a model
prediction Ŷ we can calculate the following probability density f(Ŷ ), using the familiar
equation for the normal distribution:

f(Ŷ (θ)) =
1

σ
√
2π

exp

−1

2

(
Ŷ (θ)− µ

σ

)2
 (49)

This probability density can be used as a log-likelihood contribution as follows:

ℓ(θ) = ln f(Ŷ (θ)) (50)

and added to the other likelihood contributions (again assuming independence).

4 Miscellaneous issues

4.1 AmP

Deriving the basic parameters of stddeb (see Table 1) is not a trivial matter. However,
this task is facilitated by the add-my-pet (AmP, see [30]) library, which contains stddeb
parameter values and implied properties for an enormous range of species. This is a living
library, where entries are regularly being added and updated, with contributions from a
broad group of international scientists. Matlab-based code is available to extract the most-
likely parameter set from all available observations on the life history of the species in a
structured manner (see the AmP portal https://www.bio.vu.nl/thb/deb/deblab/add_
my_pet/index.html). Since experimental data on a species may well be insufficient to
identify all parameters, ‘pseudo-data’ are added, representing the ‘generalised animal’ (see
[28]). Each entry is evaluated by a board of curators before it is placed on the website.
Using the AmP library for chemical risk assessment purposes was proposed by [3, 37].
However, there are limitations to this approach, as already mentioned in the main text.
The main issue is that, in almost all cases, some parameters will need to be re-fitted to
provide a close correspondence between the model and the control response in the toxicity
test. At this moment, it is unclear what a good strategy would be for re-fitting.

The paper of Kooijman et al [27] provides guidance for fitting the standard deb model
to data. Depending on the type of data available, that paper explains which (compound)
parameters can be identified. Even though this is very practical, it is not directly applicable
as a strategy for deciding which AmP parameters to re-fit on a specific data set. Firstly,
the model formulation in [27] is a scaled model version: the parameter for the assimilation
rate is scaled out (which strongly improves the identifiability of the remaining parameters).
Secondly, it uses a number of compound parameters (g and k̇M) not present in the current
formulation. And finally, identifying parameters from data is not the same question as
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deciding which AmP parameters should be re-fitted. If we cannot identify a parameter
from the control data set, should then we leave this parameter at the value of the AmP
entry? Since the basic deb parameters are highly interdependent in their effect on the life
history, this is not a simple ‘yes’.

Despite these issues, we can still obtain valuable pointers from the paper of Kooijman
et al [27]. The AmP parameters that typically cannot be estimated from growth and
reproduction data, from one or small range of food levels, would be (restricted to the
parameters considered in the present formulation): TA, {ṗAM} (unless maximum size can
be fixed), κR, {ṗT}, kJ , and typically EG and δM (unless length and volume/weight is
available). This leaves v̇, [ṗM ], κ and the maturity thresholds E∗

H as prime candidates for
re-fitting. With the relationships for the compound parameters g and k̇m (see conversions
on Page 7 of this document), this latter list is consistent with the suggestions for the scaled
deb model [27]. This could be used as a default list for re-estimation for tktd modelling,
and these are also the parameters re-fitted for the present case study (see main text, Table
1).

More research is needed to refine the strategy for adapting the AmP entry to a specific
toxicity data set. A promising direction to explore would, for example, be to re-fit all
basic parameters to the controls of the toxicity test, but use the AmP values as prior
distributions (in the Bayesian sense). Thereby, all parameters are allowed to change,
but the fit is penalised if the parameters stray too far from the AmP values. Such a
strategy would guard against large deviations from the AmP entry. The parameters in
the AmP entries are currently provided without confidence intervals; such intervals would
help designing the priors. Methods to derive confidence intervals for stddeb parameters
have been developed [31], although these do not (yet) consider the correlations between
the parameters.

For tktd modelling, we need a close correspondence between the basic model and
the control response for a specific experimental test, while the AmP entry provides a
compromise between all available sources of information for a species. The AmP entry for
Folsomia candida [8], as used for the case study here, is clearly such a compromise between
various, not entirely consistent, data sets. The fits on body size and reproductive output
shown in the entry are not very convincing. Furthermore, some of the implied properties
are dubious. For example, the parametrisation implies that 85% of the body weight of
the animal is comprised of reserve, which seems unrealistic. It is furthermore unclear why
a dry-weight density dV of 0.17 g/cm3 is used ([7] derived a value of 0.28 g/cm3 for this
species). This illustrates that at least some of the entries do not yet provide a solid basis
for tktd analysis.

4.2 DEBtool code for TKTD modelling

The debtool Matlab platform also contains code for analysis of toxicity data, linked to
the AmP library (see AmPtox at https://amptox.debtheory.org/docs/index.html,
accessed October 2021). There is no presentation of the underlying equations and assump-
tions. However, from scanning through the code we can already make a few observations
in relation to stddeb-tktd.
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1. The AmPtox code assumes that toxicity is driven by the toxicokinetics of the parent
compound, and thus does not consider ‘damage’. It therefore only applies a single
feedback setting, namely [1, 1, 1, 0], as also used for the classical debtox models
[25, 20]. For our stddeb-tktd, we explicitly consider other configurations as well.

2. The feedbacks in AmPtox are using structural length, just as done for stddeb-tktd.
Some files use the maximum length under stress for scaling uptake/elimination, which
is likely an error (scaling should be done with reference to a constant maximum
length).

3. The AmPtox code applies the same pMoAs as proposed for stddeb-tktd. The only
difference is that in AmPtox, costs for growth is not linked to costs for maturation
as done in Table 5.

4. The AmPtox code applies a scaled version of the standard animal model, rather than
the unscaled model in primary parameters as used for stddeb-tktd. Therefore, some
conversions are required in the code.

5. The AmPtox code does not consider toxicant-induced starvation, metabolic acceler-
ation, or time-varying exposure.

6. The AmPtox code applies the maternal effects rule, also considering toxic stress on
the embryo. The embryo is implicitly assumed to have the same stressed parameter
values as the mother at the time of egg formation, and these parameters remain
constant over egg development. However, the egg costs are not calculated from
reserve density e of the mother, but from the stress level (for effects on assimilation)
or assuming e = 1 (for the other pMoAs). Our stddeb-tktd ignores toxic effects on
the embryo for the egg costs and bases egg costs on e, f or f = 1.

4.3 Quick comparison to DEBtox2019

Table 7 compares the here-described version of stddeb-tktd to debtox2019 [10], in general
terms, focussing on the model structure. The simplified model lacks a reserve compartment
and does not follow maturity as a state variable. This simplifies the implementation and
application considerably. The use of compound parameters also makes it easier to work
with, and the simplified model can generally be fitted using only the data from the toxicity
test. The downside is that the simplifications may limit biological realism, and limit the
flexibility of the model (e.g., it restricts the number of pMoAs and model extensions that
can be tried).

The simplified model, for life stages post birth, can actually be viewed as a special
case of the standard deb animal model (the embryo stage is treated quite differently). It
follows when v → ∞ (so reserve becomes vanishingly small) and for a special choice of k̇J
(so that body size is a good proxy for maturity status). Additionally, the simplified model
has constant costs for a single egg, hidden in the parameter for the maximum reproduction
rate.
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Table 7: Comparison of debtox2019 and stddeb-tktd.

Issue stdDEB-TKTD DEBtox2019
Parameters Primary parameters, abstract but with

a direct link to the underlying energy
flows.

Compound parameters, easy to inter-
pret and with a direct link to observable
properties, but no direct link to under-
lying energy flows.

Parametrisation Basic parameters must be taken from
AmP, as the control data alone do not
suffice. Some of them would need to be
refitted to the controls.

Basic parameters are generally fitted on
controls. AmP cannot be used, though
the ‘implied properties’ can be used as
starting values or to constrain the fit.

Reserve Reserve standard. However, the
(change in) reserve is not (yet) consid-
ered in the tktd module.

No reserve. This version is based
on debkiss, which removes the reserve
compartment.

Egg costs Maternal effects rule used to calculate
egg costs (a model output). How-
ever, the implementation supplies sev-
eral simplifying options.

The cost for an egg is constant. This
parameter is hidden in the maximum
reproduction rate.

Initial values Initial values for length, reserve and
maturity are needed (model outputs).

Only body length needs an initial value
(a model parameter).

Puberty Investment into reproduction starts at
a fixed maturity threshold.

Investment into reproduction starts at
a fixed body length.

Metamorphosis Acceleration stops at a fixed maturity
threshold.

Acceleration stops a fixed body length.

Note that Table 7 only compares two model versions, at the rather extreme ends of the
simple-complex range (see [33]).

4.4 Derivation of initial values for eggs

We can get a first guess for the eggs costs and time to birth by considering an egg with
an infinitely large reserve, and assume that all maintenance costs can be ignored. This
is similar to foetal development (see also [22]), but also to the embryonic development in
debkiss [16]. The state variables are then given by (here: κH = 1 and f = 0, so ṗA = 0):

d

dt
E = −ṗC (51)

d

dt
L =

1

3L2

ṗG
[EG]

(52)

d

dt
EH = ṗR (53)

The powers (ignoring somatic and maturity maintenance):

ṗC = E
[EG]v̇L

2

κE + [EG]L3
(54)

ṗG = κṗC (55)

ṗR = (1− κ)ṗC (56)
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Start with ṗC :

ṗC =
E[EG]v̇L

2

κE + [EG]L3
when E → ∞: (57)

ṗC =
[EG]v̇L

2

κ
(58)

Next ṗG and include it into the ode for L:

ṗG = κṗC fill in ṗC : (59)

ṗG = [EG]v̇L
2 (60)

d

dt
L =

1

3L2

ṗG
[EG]

fill in ṗG: (61)

d

dt
L =

v̇

3
solve for L(0) ≈ 0: (62)

L =
v̇

3
t (63)

Next ṗR and include it into the ode for EH :

ṗR = (1− κ)ṗC fill in ṗC : (64)

ṗR = (1− κ)
[EG]v̇L

2

κ
fill in L: (65)

ṗR =
1− κ

κ
[EG]

v̇3

9
t2 (66)

d

dt
EH = ṗR fill in ṗR: (67)

d

dt
EH =

1− κ

κ
[EG]

v̇3

9
t2 solve for L(0) = 0: (68)

EH =
1− κ

κ
[EG]

v̇3

27
t3 solve tb where EH = Eb

H : (69)

tb =

(
Eb

H

κ

1− κ

27

[EG]v̇3

)1/3

(70)

Next the ode for E:
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d

dt
E = −ṗC fill in ṗi: (71)

d

dt
E = − [EG]v̇L

2

κ
fill in L: (72)

d

dt
E = − [EG]v̇

3

9κ
t2 solve for E(0) = E0: (73)

E = E0 −
[EG]v̇

3

27κ
t3 calculate ∆E to reach tb: (74)

∆E =
[EG]v̇

3

27κ
t3b (75)

We can now use tb as lower limit for the end of the time vector for simulation, as eggs will
develop slower than a foetus without maintenance. We can furthermore use ∆E as lower
limit for E0, as eggs will need more reserve to complete their development.

An advantage of using these estimates rather than the implied properties of AmP is
when we start re-fitting basic model parameters. That would rapidly lead to a situation
where the AmP E0 is far out of range. From this initial estimate, we need to fill a table
with values of E0 with the corresponding eb and values for all the states at birth. The
implementation in byom proceeds through a number of steps. In simplified form:

1. Our first guess for E0 may be too low to allow birth. Go through a loop, increasing
E0 by 25% of the initial guess, until we have an E0 that allows birth. Calculate
corresponding eb.

2. Increase that E0 by a small amount (1% of the initial guess) and calculate corre-
sponding eb. With these two values, we can calculate the slope of E0 versus eb. Use
that slope to estimate a change in E0 that leads to an 8% change in eb. If our eb at
this point is 0.7 or less, take half that step.

3. Decrease E0 in a loop until eb < 0.3. Every time that birth takes place, collect the
state variables at birth, and calculate a new step size that would lead to 8% change
in eb (or half that when eb < 0.7). A safety is included: if birth does not occur
because the egg reserve runs out, the step size is decreased, a maximum of 3 times.
This should ensure that our lowest value in the table is close to 0.3 or to the critical
value for reaching birth.

4. Increase E0 in a loop until eb > 1.5. Every time that birth takes place, collect the
state variables at birth, and calculate a new step size that would lead to 12% change
in eb (or half that when eb < 0.7).

The 8 and 12% are tuned to generally (in the tested cases) arrive at a range that has steps
of approximately 0.1 for eb, and smaller steps for smaller values. The aim is to reach a
table with approximately 20 values spanning 0.3 < eb < 1.5. This should be enough for
most purposes.
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An events function is used to catch the point where the embryo no longer has enough
reserve to sustain further development. This will occur when scaled reserve density e hits
the scaled length l = L/Lm, with:

e =
Ev̇

{ṗAm}L3
and Lm = κ

{ṗAm}
[ṗM ]

(76)

For some combinations of parameter values, reaching eb = 0.3 will not be possible.
Before birth is reached, e < l and the embryo starves (and, presumably, maturity will
no longer increase). This is especially occurring for species with acceleration. Before
metamorphosis, Lm, as implied by the model parameters, is relatively small; much smaller
than the real ultimate body length. Therefore, scaled length l is relatively large at birth,
and can be larger than 0.3 in some cases.

It is important to note that this table of eb versus E0 only changes when we fit basic
deb parameters, or possibly when we change temperature. If we fit the toxicant param-
eters in isolation, while keeping basic parameters fixed, there is no need to continuously
recalculate this table. In the byom package, the code is set up in this fashion, so there
is no recalculation of the table when fitting the toxicity parameters. This ensures that
reasonable calculation times are feasible.

Note: when k̇J = k̇M , we can derive the exact same results. Key is that EH/L
3 is

constant under that condition. The investment into maturation is a constant fraction of
what is used for growth, so ṗR/ṗG is constant.

ṗR
ṗG

=
(1− κ)ṗC − ṗJ

κṗC − ṗM
using k̇M and k̇J = k̇M : (77)

=
(1− κ)ṗC − k̇MEH

κṗC − k̇M [EG]L3
this remains constant when: (78)

EH =
1− κ

κ
[EG]L

3 (79)

This is a logical result. The 1 − κ branch receives a fraction (1 − κ)/κ of what goes into
the κ branch. And [EG]L

3 is the energy invested to make L3 of structure. Because the
equation for dL/dt leads to the same result as given above (the maintenance drops out as
it is in ṗC and ṗG), we already can see Eq. 69 emerging.
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5 Details for the case study

The files used to make the calculations for the case study are part of the byom package for
stddeb-tktd version 1.0. that can be obtained from: http://www.debtox.info/byom.

html. Please note that the parameter-space explorer takes a lot of calculation time, espe-
cially when also creating profile likelihoods. Calculation time can be drastically reduced by
using parallel processing (requiring Matlab’s parallel computing toolbox), and a computer
with plenty of (fast) physical cores.

5.1 Details for the basic fit in main text

Figure 3 shows the profile likelihoods for the fitted basic parameters. The profiles are well
defined, so there are no identification issues. The profile likelihoods serve to obtain the
95% confidence intervals on the basic model parameters. Figure 4 shows the profile for the
fitted background hazard rate hb, which also is well defined. Figure 5 shows the end result
for the zero-variate data point, included in the fit: the initial dry weight of an egg. It is on
the high side of the confidence interval for the data point, but still very reasonable. The
zero-variate data point served to constrain the basic fit, such that the parameters cannot
imply unrealistic egg weights.
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Figure 3: Profile likelihoods for the fit of the basic parameters to the control data for
growth and reproduction. Horizontal line is the cut-off to obtain 95% confidence intervals.
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Figure 4: Profile likelihoods for the fit of the background hazard rate to the control mor-
tality data. Horizontal line is the cut-off to obtain 95% confidence intervals.
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Figure 5: Final result for the zero-variate data point.

5.2 Details for the toxicity fit in main text

The toxicity parameters where fitted using the parameter-space explorer [11]. This algo-
rithm attempts to map parameter space to find the best fitting parameter set, as well as a
sample from parameter space for error propagation.

The parameter-space plot is shown in Figure 6, which shows that all five tktd pa-
rameters are identifiable from the data set. On the diagonal, profile likelihoods for the
individual parameters are shown, which are used to derive the 95% confidence intervals on
the parameters.

Figure 7 shows the same fit as in the main text, but in more detail, with each endpoint
and each treatment in a separate panel. The intervals on the curve are generated from the
sample in Figure 6 (see [11]). This does not include the uncertainty in the basis parameters,
and hence the controls and low-exposure treatments do not have a green area around them.
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Figure 6: Parameter-space plot for the fit of the tktd parameters to the complete data set.
Panels show the sample from parameter space from various directions. On the diagonal,
the profile likelihoods for the individual parameters are plotted.

Figure 7: Fit on the complete data set, with one treatment/endpoint per panel. Green
areas show the uncertainty in the model curve resulting from the parameter uncertainty in
the tktd parameters. Note that the data set was truncated for survival and reproduction
data. The dotted line in the treatments indicates the control response.
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Figure 8: Predicted-observed plots for the fit in Figure 7. Uncertainty in the model
prediction is shown as vertical error bars (95% CI). Uncertainty in the data is only shown
for survival as the Wilson score interval on the observed survival fraction.
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5.3 Local sensitivity analysis

The byom platform includes various methods for sensitivity analysis. The first analysis is
a classic local analysis. Each parameter is changed by a small fraction, and the response on
the endpoints plotted. This has to be done separately for each endpoint, each treatment,
and each timepoint. Figure 9 shows the results for the damage state variable. Clearly, only
parameter kd influences this endpoint, and only for the treatments with exposure. When
damage approaches steady-state, the sensitivity for kd decreases, as this parameter only
affects the speed at which steady state is achieved.

Figure 9: Local sensitivity analysis for the state variable damage.

Sensitivity for survival is shown in Figure 10. This endpoint is mainly affected by zs and
bs, but in an opposite manner: increasing the threshold increases survival, while increasing
the effect strength decreases it. Survival is not very sensitive to the value for kd.

Figure 11 shows that reproduction is mostly sensitive to zb and bb, and that sensitivity
is rather constant over time. Reproduction is not very sensitive to the value for kd.

Sensitivity analysis is often mentioned as an essential aspect of modelling (e.g., [1]).
However, for models that are fitted to data, it is unclear what it adds to an analysis [14].
The kd is a rather insensitive parameter for survival and reproduction, in this case study,
but this does not mean that we should remove it from the model.
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Figure 10: Local sensitivity analysis for the state variable survival.

Figure 11: Local sensitivity analysis for the state variable cumulative reproduction.
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5.4 Sensitivity as contribution to uncertainty in output

A different measure of sensitivity is a parameter’s contribution to the overall uncertainty.
We can approximate this relative contribution by calculating the correlation between a
parameter’s value in the sample to the value for an endpoint. Again, this metric is specific
for the endpoint, the treatment, and the time point.

Figure 12 shows that kd contributes most to the uncertainty in damage. Perhaps
surprisingly, the other parameters also contribute somewhat. This relates to the (limited)
correlations between the model parameters, since only kd affects damage (this is the fit
without feedbacks). The contribution to uncertainty stops at some point in time, probably
because the uncertainty in damage becomes very small when damage approaches steady
state. Note that for the controls the correlations are zero, as there is no uncertainty in the
control fit (at least not in this step of the analysis).

Figure 12: Sensitivity analysis, as contribution to uncertainty, for the state variable dam-
age.

Figures 13 and 14 show the results for survival and reproduction. Again, it is not very
clear what such a sensitivity analysis contributes to the analysis. In principle, it allows us
to see which parameter contributes most to the uncertainty. However, it is not possible
to improve the certainty for one parameter in isolation. Nevertheless, at least in theory,
it may be possible to design toxicity experiments such that they stand a better chance
of identifying a specific parameter. For example, testing a range of concentrations with
no-to-low effects might help to get a better estimate for the threshold parameters, and
using pulsed exposure may aid estimation of kd.
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Figure 13: Sensitivity analysis, as contribution to uncertainty, for the state variable sur-
vival.

Figure 14: Sensitivity analysis, as contribution to uncertainty, for the state variable cumu-
lative reproduction.
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5.5 Alternative model configurations

In the main text, only two pMoA’s and four feedback configurations were tested, and only
the best of those is shown (‘hazards to the embryo’ without any feedback). The two pMoA’s
tested (‘costs for reproduction’ and ‘hazards to the embryo’) are logical choices, as there
is no clear effect on body size in the toxicity test. However, we can also test the combined
pMoA ‘costs for growth and costs for reproduction’ to see if a subtle effect on growth could
be possible. For the feedback configuration, we theoretically have 16 different options. In
the main text, we only showed the results for the four most obvious choices, but here we
present all permutations.

Note that the feedback configurations that include ‘losses with reproduction’ also re-
quire a value for FBV : the egg weight as fraction of the mother’s weight. Following [10],
we set FBV = 0.007, which is a reasonable value for F. candida.

Table 8 shows that ‘hazards to the embryo’ almost always produces the best fits, gen-
erally closely followed by ‘costs for reproduction’. The combined pMoA ‘costs for growth
and costs for reproduction’ performs much worse and can be ignored. Interestingly, the
overall best fit results from the feedback configuration [1,0,0,1]. This implies that uptake
(or damage accrual) is scaled with surface:volume ratio, but not elimination (or damage
repair). Furthermore, it has losses with reproduction, but not dilution by growth. The first
part may be reasonable: for chlorpyrifos, it may not be such a stretch of the imagination
to assume that damage accrual is dominated by uptake of the parent compound across
a body surface, while damage repair is not a surface related process (e.g., because it is
represents the slow repair or renewal of affected acetylcholinesterase). The second part
is however unrealistic: losses with reproduction are in essence a form of growth dilution.
It is only that the biomass produced does not remain attached to the mother’s body. It
seems unrealistic to assume that chlorpyrifos (or the damage it causes) is preferentially
transported into the eggs.

At this point, it is good to take a look at this overall best fit, and see what makes the
fit in Figure 15 so good. This fit does not look too different from the fit for feedbacks
[0,0,0,0], as shown in the main text. However, there are two interesting differences. Firstly,
for survival, the mortality in treatment 9.28 mg/kg now levels off around day 30. Secondly,
the cumulative reproduction in the same treatment curves upwards, more strongly than
for the fit in the main text. In both cases, the fit to treatment 9.28 mg/kg in Figure 15
provides a closer match to the observations. The data set thus indicates that toxic effects
become less pronounced later in the toxicity test. The feedback configuration [1,0,0,1]
implies lower body residues (or damage levels) for adults than for juveniles, and thus less
effects. The uptake rate scales with surface:volume ratio, which means it is higher in small
individuals. The elimination rate is not affected by size, so as a result, the steady state
body residue (or damage level) is higher in juveniles. On top of that, adults obtain an
extra elimination route through egg production.

It is thus understandable why configuration [1,0,0,1] should come out as the best one.
However, is it reasonable to assume that this is ‘true’? As already explained, losses with
reproduction without associated losses due to growth dilution seems unrealistic. Further-
more, there is a reasonable possibility that the behaviour in this treatment is an artefact.
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Feedbacks repro costs repro hazards growth+repro costs
[0,0,0,0] 31 28 78
[0,0,0,1] 18 13 60
[0,0,1,0] 47 44 115
[0,0,1,1] 47 42 100
[0,1,0,0] 61 44 85
[0,1,0,1] 57 39 62
[0,1,1,0] 62 45 85
[0,1,1,1] 62 44 85
[1,0,0,0] 21 16 90
[1,0,0,1] 19 0 89
[1,0,1,0] 57 61 177
[1,0,1,1] 51 51 181
[1,1,0,0] 38 34 94
[1,1,0,1] 20 6.4 94
[1,1,1,0] 48 47 176
[1,1,1,1] 47 47 192

Table 8: Goodness of fit for different pMoAs and feedback configurations. Values are the
difference in Akaike Information Criterion (∆AIC), relative to the best fitting configuration.

It could be caused by random variation, or by slight differences in the actual concentration
of chlorpyrifos in food (the analysis was based on nominal concentrations, since no mea-
surements were taken). However, it could also result from a real change in sensitivity with
age, e.g., an increase of the thresholds for effects over ontogeny. Another possibility is a
small amount of inter-individual variation in sensitivity (e.g., the thresholds for effects). If
mortality strikes the most sensitive individuals, this will produce a lower apparent severity
of the sub-lethal toxic effects over time. In principle, we could check this by looking at the
data for individuals over time (as the springtails were kept individually). Unfortunately,
the test design was such that animals that died in the reproduction part were replaced
by animals from a reserve pool kept under the same conditions. The survival data are
thus based on the total of 30 animals per treatment, while reproduction is scored on 10
individuals (or less when there were no spare animals left).

All in all, these issues provide little confidence in configuration [1,0,0,1], as being more
meaningful than the default configuration [0,0,0,0]. This example clearly illustrates the
difficulties of identifying the most plausible feedback configuration. Applying short, pulsed,
exposure at different points in the life cycle might be an experimental design better suited
for this purpose.
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Figure 15: Overall best fit to the data, assuming the pMoA ‘hazards to the embryo’ and
the feedback configuration [1,0,0,1]. Dotted lines around the model curves show the 95%
CI on the model output, resulting from uncertainty in the toxicity parameters.

40



References

[1] J. Augusiak, P. J. Van den Brink, and V. Grimm. Merging validation and evaluation of ecological
models to ‘evaludation’: A review of terminology and a practical approach. Ecological Modelling,
280:117–128, 2014.

[2] S. Augustine, B. Gagnaire, C. Adam-Guillermin, and S. A. L. M. Kooijman. Effects of uranium on
the metabolism of zebrafish, Danio rerio. Aquatic Toxicology, 118:9–26, 2012.

[3] J. Baas, S. Augustine, G. M. Marques, and J. L. Dorne. Dynamic energy budget models in ecological
risk assessment: from principles to applications. Science of the Total Environment, 628-629:249–260,
2018.

[4] J. J. M. Bedaux and S. A. L. M. Kooijman. Statistical analysis of bioassays based on hazard modelling.
Environmental and Ecological Statistics, 1:303–314, 1994.

[5] J. Bernardo. Maternal effects in animal ecology. American Zoologist, 36(2):83–105, 1996.

[6] F. Gabsi, D. S. Glazier, M. Hammers-Wirtz, H. T. Ratte, and T. G. Preuss. How do interactive
maternal traits and environmental factors determine offspring size in Daphnia magna? Annales De
Limnologie-International Journal of Limnology, 50(1):9–18, 2014.

[7] N. T. Hamda. Mechanistic models to explore combined effects of toxic chemicals and natural stress-
ing factors: case study on springtails. PhD thesis, Jagiellonian University, Krakow/VU University
Amsterdam (http://hdl.handle.net/1871/50121), 2014.

[8] N. T. Hamda, S. Augustine, and B. Kooijman. AmP Folsomia candida, version
2016/02/09, https://bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Folsomia_candida/
Folsomia_candida_par.html, 2016.

[9] T. Jager. Making sense of chemical stress. Applications of Dynamic Energy Budget theory in ecotox-
icology and stress ecology. Leanpub: https://leanpub.com/debtox_book, Version 2.0, 9 May 2019,
2017.

[10] T. Jager. Revisiting simplified DEBtox models for analysing ecotoxicity data. Ecological Modelling,
416:108904, 2020.

[11] T. Jager. Robust likelihood-based approach for automated optimization and uncertainty analy-
sis of toxicokinetic-toxicodynamic models. Integrated Environmental Assessment and Management,
17(2):388–397, 2021.

[12] T. Jager. DEBkiss. A simple framework for animal energy budgets. Leanpub: https://leanpub.

com/debkiss_book, Version 3.0, 19 September 2022, 2022.

[13] T. Jager, C. Albert, T. G. Preuss, and R. Ashauer. General Unified Threshold model of Survival
- a toxicokinetic-toxicodynamic framework for ecotoxicology. Environmental Science & Technology,
45:2529–2540, 2011.

[14] T. Jager and R. Ashauer. How to evaluate the quality of toxicokinetic-toxicodynamic models in the
context of environmental risk assessment. Integrated Environmental Assessment and Management,
14(5):604–614, 2018.

[15] T. Jager and R. Ashauer. Modelling survival under chemical stress. A comprehensive guide to the
GUTS framework. Toxicodynamics Ltd., York, UK. Available from Leanpub, https://leanpub.
com/guts_book, Version 2.0, 8 December 2018, 2018.

[16] T. Jager, R. Nepstad, B. H. Hansen, and J. Farkas. Simple energy-budget model for yolk-feeding
stages of Atlantic cod (Gadus morhua). Ecological Modelling, 385:213–219, 2018.

[17] T. Jager, I. Salaberria, and B. H. Hansen. Capturing the life history of the marine copepod Calanus
sinicus into a generic bioenergetics framework. Ecological Modelling, 299:114–120, 2015.

41

https://bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Folsomia_candida/Folsomia_candida_par.html
https://bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Folsomia_candida/Folsomia_candida_par.html
https://leanpub.com/debtox_book
https://leanpub.com/debkiss_book
https://leanpub.com/debkiss_book
https://leanpub.com/guts_book
https://leanpub.com/guts_book


[18] T. Jager, M. Trijau, N. Sherborne, B. Goussen, and R. Ashauer. Considerations for using repro-
duction data in toxicokinetic-toxicodynamic modeling. Integrated Environmental Assessment and
Management, 18(2):479–487, 2022.

[19] T. Jager, T. Vandenbrouck, J. Baas, W. M. De Coen, and S. A. L. M. Kooijman. A biology-based
approach for mixture toxicity of multiple endpoints over the life cycle. Ecotoxicology, 19:351–361,
2010.

[20] T. Jager and E. I. Zimmer. Simplified Dynamic Energy Budget model for analysing ecotoxicity data.
Ecological Modelling, 225:74–81, 2012.

[21] J. Koch and K. A. C. De Schamphelaere. Making sense of life-history effects of the antidepressant
citalopram in the copepod Nitocra spinipes using a bioenergetics model. Environmental Toxicology
and Chemistry, 40(7):1926–1937, 2021.

[22] S. A. L. M. Kooijman. What the egg can tell about its hen: embryonic development on the basis of
dynamic energy budgets. Journal of Mathematical Biology, 58(3):377–394, 2009.

[23] S. A. L. M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Uni-
versity Press, Cambridge, UK, third edition, 2010.

[24] S. A. L. M. Kooijman. Metabolic acceleration in animal ontogeny: an evolutionary perspective.
Journal of Sea Research, 94:128–137, 2014.

[25] S. A. L. M. Kooijman and J. J. M. Bedaux. Analysis of toxicity tests on Daphnia survival and
reproduction. Water Research, 30(7):1711–1723, 1996.

[26] S. A. L. M. Kooijman, L. Pecquerie, S. Augustine, and M. Jusup. Scenarios for acceleration in fish
development and the role of metamorphosis. Journal of Sea Research, 66:419–423, 2011.

[27] S. A. L. M. Kooijman, T. Sousa, L. Pecquerie, J. Van der Meer, and T. Jager. From food-dependent
statistics to metabolic parameters, a practical guide to the use of dynamic energy budget theory.
Biological Reviews, 83:533–552, 2008.

[28] K. Lika, M. R. Kearney, V. Freitas, H. W. Van der Veer, J. Van der Meer, J. W. M. Wijsman,
L. Pecquerie, and S. A. L. M. Kooijman. The “covariation method” for estimating the parameters of
the standard Dynamic Energy Budget model I: philosophy and approach. Journal of Sea Research,
66:270–277, 2011.

[29] J. L. Maino, M. R. Kearney, R. M. Nisbet, and S. A. L. M. Kooijman. Reconciling theories for
metabolic scaling. Journal of Animal Ecology, 83(1):20–29, 2014.

[30] G. M. Marques, S. Augustine, K. Lika, L. Pecquerie, T. Domingos, and S. A. L. M. Kooijman.
The AmP project: comparing species on the basis of dynamic energy budget parameters. PLoS
Computational Biology, 14(5):e1006100, 2018.

[31] G. M. Marques, K. Lika, S. Augustine, L. Pecquerie, and S. A. L. M. Kooijman. Fitting multiple
models to multiple data sets. Journal of Sea Research, 143:48–56, 2019.

[32] L. Pecquerie, P. Petitgas, and S. A. L. M. Kooijman. Modeling fish growth and reproduction in the
context of the dynamic energy budget theory to predict environmental impact on anchovy spawning
duration. Journal of Sea Research, 62(2-3):93–105, 2009.

[33] N. Sherborne, N. Galic, and R. Ashauer. Sublethal effect modelling for environmental risk assessment
of chemicals: problem definition, model variants, application and challenges. Science of The Total
Environment, 745:141027, 2020.

[34] T. Sousa, T. Domingos, and S. A. L. M. Kooijman. From empirical patterns to theory: a for-
mal metabolic theory of life. Philosophical Transactions of the Royal Society B-Biological Sciences,
363:2453–2464, 2008.

42



[35] J. Van der Meer. A paradox in individual-based models of populations. Conservation Physiology,
4(1):cow023, 2016.

[36] R. J. F. Van Haren, H. E. Schepers, and S. A. L. M. Kooijman. Dynamic energy budgets affect
kinetics of xenobiotics in the marine mussel Mytilus edulis. Chemosphere, 29:163–189, 1994.

[37] E. I. Zimmer, T. G. Preuss, S. Norman, B. Minten, and V. Ducrot. Modelling effects of time-variable
exposure to the pyrethroid beta-cyfluthrin on rainbow trout early life stages. Environmental Sciences
Europe, 30, 2018.

43


	Model specification of the basic DEB model
	Powers and state variables
	Initial values and egg costs
	Temperature correction
	Starvation
	The abj-model

	The TKTD module
	Damage dynamics
	Stress, hazard and survival
	Modes of action

	Auxiliary theory and statistics
	Body size as length
	Body size as wet weight
	Reproduction as eggs or neonates
	Statistics

	Miscellaneous issues
	AmP
	DEBtool code for TKTD modelling
	Quick comparison to DEBtox2019
	Derivation of initial values for eggs

	Details for the case study
	Details for the basic fit in main text
	Details for the toxicity fit in main text
	Local sensitivity analysis
	Sensitivity as contribution to uncertainty in output
	Alternative model configurations


