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Preface

About this book

This book is the technical document that belongs to the e-book “Making sense of chemical
stress”, which can be found on http://www.debtox.info/book.html. This document con-
tains the equations for the deb models discussed in the main book, including their derivation
and alternative formulations for some modules. The first version of this book was in 2012,
and I expected to update it regularly. However, it took me 2.5 years to come up with a small
update. The main reason is that I started with the debkiss simplification (which removes the
reserve compartment of standard deb), which keeps me pretty busy. The e-book on debkiss
can be found here: http://www.debtox.info/book_debkiss.html. However, I might return
to standard deb and debtox, and update this document again; check the website to see if
there is a newer version.

This book does not provide a lot of background or rationale for the equations and the
writing style is pretty sloppy, so there no point in reading it from cover to cover. It is best to
use it as a reference manual (it also serves as a reference for me). The chapters in this book
follow the chapters in the main text.

Disclaimer

This document will contain errors, which is inevitable given the sheer number of equations.
If you spot one, please let me know so that I can include corrections in updates of this file. I
do not accept liability or responsibility for any damage or costs incurred as a result of these
errors.

Most of the presented ‘model alternatives’ are not well tested yet, but they can form the
starting point for dedicated research.

http://www.debtox.info/book.html
http://www.debtox.info/book_debkiss.html
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Notation

In this book, I follow as strictly as possible the notation used in the deb book of Kooijman
[15] (see also http://www.bio.vu.nl/thb/research/bib/Kooy2010_n.pdf). This notation
takes some getting used to, and deviates from common use of symbols in ecotoxicology and
biology. This is caused by the fact that deb theory covers so many fields, each with conflicting
use of notation, that it is impossible to use a single unique notation that everybody is familiar
with. Still, even this dedicated notation runs into consistency problems here and there (mainly
with the subscripts). I follow the same notation to ensure that this book can be read next to
the deb book [15].

Some conventions:

• Parameters or variables indicated by the same leading symbol have the same dimensions.
For example, L, Lm and Lw are all in body length (dimension of ‘length of organism’,
L).

• A dot above a symbol specifies that this parameter is a rate, with a dimension that
includes time−1. This dot should not be read as the symbol representing a differential
quotient (which will always be specified with a d

dt).

• Quantities that are expressed per unit of structural volume are put between square
braces; quantities per unit of surface area are between curly braces. For example,
[ṗM ] = ṗM/L

3.

Common leading symbols are:
c external or scaled internal concentration
e scaled energy in reserve
E energy in reserve
J fluxes of compound

k̇ specific rate constant
L body length
M mass (in moles)
ṗ energy flux (power)
P partition coefficient (volume based)
U scaled reserve
V body volume

Common indices are:

http://www.bio.vu.nl/thb/research/bib/Kooy2010_n.pdf
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0 no effect, or the freshly laid egg
A assimilation
b birth (start of feeding)
C mobilisation
d dissolved (concentrations) or dry (weight)
E reserve
H maturity
J maturity maintenance
m maximum
M somatic maintenance
p puberty (start investment reproduction)
Q toxicant
R reproduction buffer
V structure
w physical (volume), wet (weight) or water
X food

For the dimensions, I use # for countable numbers (e.g., moles of a compound or eggs), e for
energy, t for time, l for length of environment (l3 is an environmental volume), L for length
of an organism, and m for mass (weight).

Many of the symbols that I use in this file are in the table below. This table is certainly
not complete, but the equations in the rest of this document should be readable without
referring to this table. In future versions of this file, I will try to get this table more complete.

Symbol Description Dimensions

ab age at birth (time after egg development started) t
ap age at puberty (time after egg development started) t

ḃ† killing rate for toxicants l3#−1t−1

c0 scaled no-effect concentration for sub-lethal effects #l−3

c0† scaled no-effect concentration for lethal effects #l−3

cd dissolved concentration of toxicant in the environment #l−3

cT scaled tolerance concentration for sub-lethal effects #l−3

cV scaled internal toxicant concentration in structure #l−3

dV d dry weight density of structure mL−3

dV w wet weight density of structure mL−3

e scaled energy density in reserve: E/Em −
e0 initial scaled energy density in an egg: E0/Em −
eR scaled energy density in reproduction buffer: ER/Em −
E energy in the reserve e
EH accumulated energy investment in maturation e
EbH maturation threshold for birth (start of feeding) e
EpH maturation threshold for puberty (start investment reproduction) e
Em maximum energy in the reserve e
ER energy in the reproduction buffer e
E0 initial energy in the egg e
[EG] volume-specific energy costs per unit of structe eL−3

[Em] maximum reserve density eL−3

f scaled functional response −
{Ḟm} maximum surface-area-specific searching rate l3L−2t−1



ix

Symbol Description Dimensions

g energy investment ratio −
ḣ hazard rate (instantaneous probability to die) t−1

ḣ0 hazard rate for ‘accidents’ in control (background mortality) t−1

ḣD hazard rate due to damage from ageing t−1

ḣQ hazard rate due to toxicant exposure t−1

ḧa Weibull ageing acceleration t−2

J̇XA ingestion rate of food #t−1

{J̇XAm} maximum surface-area-specific ingestion rate #t−1L−2

k maintenance ratio k̇J/k̇M −
k̇e elimination (or dominant) rate constant t−1

k̇ref
e reference elimination rate constant t−1

k̇J maturity maintenance rate coefficient t−1

k̇M somatic maintenance rate coefficient t−1

L structural length of organism L
Lm maximum structural length of organism L
Lm0 maximum structural length of organism in control L
Lw physical length of organism (L/δM ) L
MQ total amount of chemical in organism (in moles) #
∆MQ change in amount of chemical at spawning (in moles) #
[MQ] internal concentration in organism (in moles) #L−3

M0
Q initial amount of chemical in an egg (in moles) #

[M0
Q] initial internal concentration in an egg (in moles) #L−3

MQR amount of chemical in reproduction buffer (in moles) #
MQV amount of chemical in structure (in moles) #
[MV ] number of C-atoms per unit structural volume #L−3

ṗA energy flux (power) of assimilation et−1

{ṗAm} maximum surface-area-specific assimilation rate et−1L−2

˙pC energy flux (power) of mobilisation et−1

ṗJ energy flux (power) of maturity maintenance et−1

˙pM energy flux (power) of somatic maintenance et−1

[ ˙pM ] volume-specific costs for somatic maintenance et−1L−2

PEV partition coefficient between reserve and structure L3L−3

Pow partition coefficient between octanol and water l3l−3

PV d partition coefficient between structure and water l3L−3

PWd partition coefficient between total body and water l3L−3

q̈ scaled level of damage inducing compounds t−2

ṙ specific volumetric growth rate t−1

Ṙ reproduction rate #t−1

∆R number of eggs in a spawning event #
sG Gompertz stress coefficient −
S survival probability −
SC scaled mobilisation from the reserves L2

tp handling time for a food item t
tR time for a spawning event t

ubpH ratio of maturity thresholds for birth and puberty −
UE scaled reserve level (E/{ṗAm}) tL2



x Notation

Symbol Description Dimensions

U0
E initial scaled reserve in egg tL2

UH scaled energy investment in maturition tL2

U bH scaled maturity threshold for birth tL2

UpH scaled maturity threshold for puberty tL2

UR scaled reproduction buffer tL2

[URm] volume-specific maximum scaled reproduction buffer tL−1

v̇ energy conductance Lt−1

V structural body volume of organism (L3) L3

Vw physical body volume of organism (L3) L3

X food density in the environment #l−3

δM shape coefficient −
κ allocation fraction to growth and maintenance −
κR fraction of allocated energy fixed in eggs −
µAX energy-mass coupler for assimilation from food e#−1

ωd contribution of reserve to dry weight −
ωV contribution of reserve to physical volume −
ωw contribution of reserve to wet weight −



Chapter 1

Practical energy budget models

In this chapter, I will present the sets of equations for deb models that are practical to use
in ecotoxicology. Here, they are presented without their derivation and without alternative
sub-models (which will be provided in the next chapters). In this way, it is immediately clear
what the basic models are without having to wade through pages of derivation.

1.1 The scaled standard model

The basic state variables

The change in scaled reserve is given by (t = 0 indicates the start of embryonic development):

d

dt
UE =

{
−SC if UH < U bH
fL2 − SC otherwise

with UE(0) = U0
E (1.1)

The scaled reserve density is between 0 and 1 and is defined as:

e = v̇
UE
L3

(1.2)

The scaled mobilisation power is calculated as:

SC = L2 ge

g + e

(
1 +

k̇M
v̇
L

)
(1.3)

The equation for change in structural length:

d

dt
L =

1

3L2

(
v̇

g
SC − k̇ML3

)
with L(0) ≈ 0 (1.4)

The change in scaled maturity is given by:

d

dt
UH =

{
κH((1− κ)SC − k̇JUH) if UH < UpH
0 otherwise

with UH(0) = 0 (1.5)

Note that UH(ab) = U bH and UH(ap) = UpH . The energy flux into the reproductive buffer is
given by:

d

dt
UR =

{
0 if UH < UpH
(1− κ)SC − k̇JUpH otherwise

with UR(0) = 0 (1.6)
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Two compound parameters can be used to facilitate parametrisation: the ratio of the two
rate constants for maintenance (with a default value of 1), and the ratio of the maturity at
birth and at puberty:

k =
k̇J

k̇M
and ubpH =

U bH
UpH

(1.7)

Reproductive energy to eggs

Ignoring the buffer, the mean reproduction rate is given by:

Ṙ =
κR
U0
E

d

dt
UR (1.8)

If we do consider the buffer, than at spawning events, the buffer is converted into a batch of
eggs (∆R) as follows:

∆R = floor

(
κRUR
U0
E

)
if UR = [URm]L3 or t = tR or ... (1.9)

The ‘floor’ function means to round off to the nearest integer below the value in brackets.
This is needed as only whole eggs can be produced. The conditions for spawning is highly
species specific; here I suggest the possibility for a threshold on the size-dependent filling of
the reproduction buffer [URm]L3 or a specific time tR

If the remaining energy is kept in the buffer, UR is reset to:

UR = UR −
U0
E∆R

κR
(1.10)

The scaled initial reserves in the egg U0
E is not a free parameter in the standard DEB model.

The initial reserves must be such that the embryo will hatch at the same reserve density as
its mother had at egg formation. We can simulate the embryonic development with differ-
ent values of U0

E until we observe the correct reserve density at hatching, or use dedicated
procedure (see [14]).

Alternative rule for egg costs and hatching

As an alternative, we can take the scaled initial reserves in the egg U0
E as a free parameter

(which removes U bH as a parameter), and assume hatching occurs when the reserve density
reaches a threshold (e.g., e = 1). This is less calculation intensive than the standard rule,
and has the advantage that it allows more freedom for the mother to adapt investment per
offspring, or size of offspring, in response to environmental conditions or toxicant stress.

Starvation response

Starvation occurs when the somatic maintenance costs cannot be paid anymore:

e <
L

Lm
where Lm =

v̇

k̇Mg
(1.11)

Some possible scenatios:
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Option 1: Do nothing It is possible to let the system of equations of the standard
model run with no modification, even under starvation. This implies that structural body
size will shrink, and for juveniles the maturity level, and for adults the reproduction buffer.
The unrealistic part of this strategy is that it assumes that the energy used to make a
unit of structure, maturation or buffer is completely returned when it is being used to pay
maintenance costs (this can be corrected by adding a parameter).

Option 2: Use the reproduction buffer Another option is to fix body size to the
point where starvation started, and take the energy that is short on the somatic mainte-
nance requirements from the reproduction buffer (or the flow of energy into maturation or
reproduction). The mobilisation under constant structural size is:

SC = eL2 (1.12)

The ODE for the reproduction buffer is changed to:

d

dt
UR = (1− κ)SC − k̇JUpH − κL

2

(
L

Lm
− e
)

(1.13)

This can continue until the reproduction buffer is exhausted and d
dtUR becomes negative.

Option 3: Only mobilise for somatic maintenance The last option is to only mobilise
enough energy from the reserves to fulfil the maintenance needs. This implies that:

d

dt
L = 0,

d

dt
UH = 0,

d

dt
UR = 0 (1.14)

The mobilisation from the reserves is recalculated to the minimal flux to pay somatic main-
tenance:

SC =
k̇Mκg

v̇
L3 = κ

L3

Lm
(1.15)

This recalculated flux might be less or more than what can be maximally mobilised under
normal conditions, which is eL2. This scenario can continue until the reserves are fully
depleted. However, you might also decide that no more reserves can be mobilised than the
maximum under normal conditions, so to include the condition SC ≤ eL2.

1.2 Simplified standard model

The reserve dynamics is (note that t = 0 now indicates the start of the experiment):

d

dt
e = (f − e) v̇

L
with e(0) = 1 (1.16)

For structural length, the equation is:

d

dt
L =

k̇Mg

3(e+ g)

(
e
v̇

k̇Mg
− L

)
with L(0) = L0 (1.17)

We can use the same relationships for the link with physical size measures as for the scaled
standard model (see Section 1.4). However, we would need to add an additional parameter
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for the contribution of the buffer to volume or weight, as the relationship between offspring
number and their energy or mass content is lost in the simplification.

For the reproduction rate we use:

Ṙ =

{
0 if L < Lp
Ṙm0

L3
m0−L3

p

((
v̇
k̇M
L2 + L3

)
e
e+g − L

3
p

)
otherwise

(1.18)

It is possible to simulate a reproduction buffer by collecting Ṙ, and emptying it (in discrete
offspring) during spawning events.

Instead of ˙kM and v̇, we can use the more intuitive maximum length (in the control at
maximum food) and Von Bertalanffy growth rate constant (in the control at maximum food)
as our parameters. Therefore, if g0 is given:

k̇M0 = ṙB0
3(1 + g0)

g0
and v̇ = Lm0k̇M0g0 (1.19)

1.3 Mortality

In a deb context, mortality is treated as a chance process. Chance processes in time are
modelled using the hazard rate, ḣ. If we know the hazard rate as function of time, we can
calculate the survival probability over time as:

S(t) = exp

(
−
∫ t

0
ḣ(τ) dτ

)
(1.20)

The hazard rate can be increased due to the action of toxicants (as treated in the section
on toxicodynamics below), but also due to old-age effects (discussed in Section 4.2, and not
repeated here, as I do not know which model alternative is most appropriate).

1.4 Structural to physical size

As a first approach, it is possible to use actual length, cubic root of body weight or volume, or
square root of body surface, as a proxy for structural length. This ignores the contributions of
reserve and reproduction buffer to the length measure, which might be acceptable for actual
body length, but generally not for weight, volume or surface area. Furthermore, parameters
with length in their dimension are sensitive to how this length is determined. If the aim is
to compare different species, it also makes sense to distinguish between structural length and
actual length.

An actual (well-chosen) length measure can be related to structural length by the shape-
correction coefficient:

L = δMLw (1.21)

The physical volume is a weighted sum of structure, reserve and reproduction buffer:

Vw = L3 + ωV (e+ eR)L3 with eR = v̇
UR
L3

(1.22)

The wet and dry weight of an organism are related to structural volume in a similar way,
accounting for the density of the wet or dry structure (dV and dV d):
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Ww = dV L
3 (1 + ωw(e+ eR)) (1.23)

Wd = dV dL
3 (1 + ωd(e+ eR)) (1.24)

1.5 Toxicokinetics

Here, I only present the models for scaled internal concentrations.

Basic model

The basic equation for the scaled internal concentration of a toxicant in a growing animal is:

d

dt
cV = k̇ref

e

Lm0

L
(cd − cV )− cV

3

L

d

dt
L (1.25)

Where k̇ref
e is the elimination rate in a fully-grown adult. For non-growing organisms, this

equation simplifies to:

d

dt
cV = k̇e (cd − cV ) (1.26)

Extended model

In the scaled non-simplified deb model, we can take into account changes in composition and
the effects of the reproduction buffer. For the scaled internal concentration, we scale with
the bioconcentration factor for structure PV d. The whole-body partition coefficient PWd can
change over time. I introduce a new symbol for the scaled amount of toxicant in the body1

as mQ = MQ/PV d:

d

dt
mQ = k̇e

(
cdL

3(1 + PEV (e+ eR)ωV )−mQ

)
(1.27)

mQV =
mQ

PEV (e+ eR)ωV + 1
(1.28)

cV =
mQV

L3
(1.29)

When the elimination rate is determined by the structural surface area:

k̇e = k̇ref
e

Lm0

L

1 + ωV
1 + PEV (e+ eR)ωV

(1.30)

When the area for exchange is determined by the physical volume, instead of the structural
volume:

k̇e = k̇ref
e

Lm0

L

(
1 + ωV

1 + PEV (e+ eR)ωV

)1/3

(1.31)

When the reproduction buffer is emptied, the scaled internal mass of toxicant changes by:

1I use the symbol m different from the deb book, where it is used as moles of compound relative to C-moles
of structure.
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∆mQ = − e0∆R

e+ eR
(mQ −mQV ) (1.32)

e0 = v̇
U0
E

L3
(1.33)

For constant reproduction rate:

d

dt
mQ = k̇e

(
cdL

3 (1 + PEV e ωV )−mQ

)
− Ṙe0

e
(mQ −mQV ) (1.34)

1.6 Toxicodynamics

For the effects of toxicants, I introduce a stress function as function of the dose metric. If the
dose metric is the scaled internal concentration:

s =
1

cT
max (0, cV − c0) ≡ 1

cT
(cV − c0)+ (1.35)

This stress factor is applied to one or more primary parameters. How this works out on
compound parameters is specified in Table 4.1 and 4.2.

The scaled internal concentration affects the hazard rate as:

ḣQ = ḃ†max (0, cV − c0†) ≡ ḃ† (cV − c0†)+ (1.36)

The hazard rate due to toxicant exposure (ḣQ) can simply be added to other hazard rates,
assuming that they are independent effects. Some deaths are accidental, and can be included
by a (low) constant background hazard rate (ḣ0). For short laboratory experiments, this is
usually sufficient. The total hazard is thus:

ḣ = ḣQ + ḣ0 + ḣD (1.37)



Chapter 2

The model for the standard animal

2.1 The standard model in powers

We start with a global description of deb in terms of ‘powers’ (energy fluxes, in et−1) as
indicated in Figure 2.1; in Section 2.1.1 and 2.1.3, these powers will be further specified. In
the standard deb animal model, there are two types of biomass: structure (which requires
maintenance) and reserve (which fuels metabolic processes). Structure ans reserve have a
constant composition (strong homeostasis) and at constant food density (and when reserves
are in steady state with the food level) the ratio between reserves and structure is constant
from birth to death (weak homeostasis). Both structure and reserve are state variables. deb
identifies three life-cycle stages: embryo, juvenile and adult. The switch from embryo to
juvenile is marked by the initiation of feeding, the switch from juvenile to adult marks the
end of maturation and the start of investment in reproduction. The switching is determined
by the ‘complexity’ of the organism, which is captured by the deb state variable ‘maturity’
(the cumulated investment of reserves in development). There are thus maturity thresholds
for birth EbH and puberty EpH . Note that t = 0 indicates the start of embryonic development,
unless specified otherwise.

The feeding power for juveniles and adults ṗX is turned into an assimilation flux ṗA (for
embryos, ṗX = 0, by definition) with a constant conversion efficiency (κX):

ṗA =

{
0 if EH < EbH
κX ṗX otherwise

(2.1)

The change in absolute amount of reserves (E) is given by the difference between the powers
for assimilation (ṗA) and mobilisation (ṗC):

d

dt
E =

{
−ṗC if EH < EbH
ṗA − ṗC otherwise

with E(0) = E0 (2.2)

Structural body volume L3 is calculated from the allocated mobilisation flux to the soma,
after withdrawing the maintenance power ṗM . The energy flux is converted into structural
volume using the energetic costs for structure [EG]:

d

dt
L3 =

1

[EG]
(κṗC − ṗM ) with L(0) ≈ 0 (2.3)

Maturation (as cumulated reserve investment into maturity, for embryos and juveniles) is
given in the same manner, as the difference between the allocated mobilisation power, after
withdrawing maturity maintenance ṗJ :
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food fecesb

ṗAṗX

ṗC

E

κ 1− κ

pC
ṗM ṗJ

κ 1− κ

p

L3 EH ER Ṙ

Figure 2.1: Schematic diagram of the energy flows in a standard deb animal, with the as-
sociated parameter symbols. The nodes b and p denote switches at birth (start of feeding)
and puberty (start of reproductive investment). The mobilisation flux is split according to a
constant fraction κ.

d

dt
EH =

{
κH ((1− κ)ṗC − ṗJ) if EH < EpH
0 otherwise

with EH(0) = 0 (2.4)

In addition to deb theory, we include here κH as the fraction of the energy flux available for
maturity that is fixed in maturation. Normally, we do not have to bother with this parameter,
and set it to 1, as we define maturity in terms of the reserves used to build it up. However, we
need this parameter when we add toxicants, to include an effect on the costs for maturation.

The investment in maturation stops when the invested reserves hit the threshold for
puberty EpH . At that point (thus for adults only), maturity maintenance is frozen at the
value at puberty ṗpJ , and the energy flux is channelled into the reproduction buffer ER:

d

dt
ER =

{
0 if EH < EpH
(1− κ)ṗC − ṗpJ otherwise

with ER(0) = 0 (2.5)

The mean reproduction rate can be calculated using the costs for a single egg (E0), and
assumes that a fraction κR of the allocated flux is fixed into eggs (the remainder is lost as
overheads):

Ṙ =
κR
E0

d

dt
ER (2.6)

The egg costs need to be found in such a way that they lead to hatching of an animal with
the same reserve density [E] as its mother had at the moment of egg formation (a maternal
effect). The egg starts with a very small amount of structure, no maturity, no reproduction
buffer, and an amount E0 of reserves. It hatches when the maturity hits the birth threshold
EbH . Note that in the simplified deb model, we will assume constant egg costs, and do not
deal with the embryo stage.
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2.1.1 Specification of the power for assimilation

Instead of the feeding power ṗX , it is generally easier to work with the feeding rate J̇XA in C-
moles per time (these two are related by the chemical potential of food µ̄X). The feeding rate
is taken proportional to the structural surface area. Therefore, the surface-specific feeding
rate {J̇XAm} is constant. The feeding rate is thus given by:

J̇XA =
ṗX
µ̄X

= f{J̇XAm}L2 (2.7)

The scaled functional response f is specified further as a hyperbolic relationship in food
density (also known as the Holling type II functional response):

f =
X

X + {J̇XAm}
{Ḟm}

(2.8)

where the ratio {J̇XAm}/{Ḟm} is the half-saturation coefficient for the feeding rate. This f
now varies between 0 (no food) and 1 (ad libitum food density; when X goes to infinity).
For many ecotoxicological applications, we do not want to think about food densities, and
we usually have tests performed at a (more or less) constant (usually high) food density. For
that purpose, we can work with f as a model parameter, and ignore all of the feeding details.

The feeding rates J̇XA and {J̇XAm}, as well as the searching rate {Ḟm} and the food
density X, are specified in C-moles. When food is expressed in another unit (e.g., grammes
of prey, prey items), a conversion factor is required. However, it can be easily seen from the
equations above that in the calculation of f the conversion falls out.

The assimilation flux (for juveniles and adults) scales with the structural surface area and
depends on the available food. The surface-area specific maximum assimilation power {ṗAm}
is a species-specific constant. The actual assimilation power ṗA is than given by:

ṗA = fL2{ṗAm} (2.9)

The assimilation flux is logically related to the feeding rate, through a mass-energy coupler
(converts the C-moles of {J̇XAm} into energy):

{ṗAm} = µAX{J̇XAm} (2.10)

2.1.2 Specification of the powers for maintenance

The somatic maintenance power is proportional to the structural volume. The volume-specific
somatic maintenance power is thus a species-specific constant [ṗM ]:

ṗM = [ṗM ]L3 (2.11)

The maturity maintenance power is proportional to the cumulated investment into matura-
tion:

ṗJ = k̇JEH (2.12)
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2.1.3 Specification of the mobilisation power

For the mobilisation power, we have to do a bit more work. We start with the differential
equation for the reserve, Eq. 2.2, which we rewrite to an equation for the reserve density
[E] = E/L3:

d

dt
[E] = [ṗA]− [ṗC ]− [E]ṙ (2.13)

The last term stands for the dilution of the reserves by growth, where:

ṙ =
1

L3

d

dt
L3 (2.14)

The weak homeostasis assumption of deb theory [15] demands that [E] does not change at
constant food density, and thus does not depend on body size. However, we know that [ṗA]
scales with L−1, because ṗA scales with L2 (see Eq. 2.9). For d

dt [E] to stay zero when [ṗA]
scales with L−1, the last two terms in Eq. 2.13 (−[ṗC ] − [E]ṙ) should together be some
function that scales with L−1. We can write this in Eq. 2.13 by introducing some function
H of [E], where the other parameters of this function (θ) cannot depend on L:

d

dt
[E] = [ṗA]− 1

L
H([E]; θ) (2.15)

Following an argument about partitionability of the reserves, Kooijman [15] argues that the
only possible function for H is a simple one: H = v̇[E]. This implies that the volume-specific
mobilisation power ([ṗC ]) should be found by combining the last terms in Eq. 2.13 and 2.15:

− [ṗC ]− [E]ṙ = − v̇
L

[E] (2.16)

and thus:

[ṗC ] = [E]

(
v̇

L
− ṙ
)

(2.17)

ṗC = E

(
v̇

L
− ṙ
)

(2.18)

Next, we can fill in ṙ, using Eq. 2.14 and the equation for growth Eq. 2.3, using the
maintenance power of Eq. 2.11:

ṗC = E

(
v̇

L
− 1

L3[EG]

(
κṗC − [ṗM ]L3

))
(2.19)

= E
v̇

L
− E κṗC

L3[EG]
+ E

[ṗM ]

[EG]
(2.20)

Next, we can move all terms including ṗC to the left side of the equation:

ṗC + E
κṗC

L3[EG]
= E

v̇

L
+ E

[ṗM ]

[EG]
(2.21)

ṗC

(
1 +

[E]κ

[EG]

)
= E

(
v̇

L
+

[ṗM ]

[EG]

)
(2.22)
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Which leads to:

ṗC = E
v̇/L+ [ṗM ]

[EG]

1 + [E]κ
[EG]

(2.23)

= E
[EG]v̇/L+ [ṗM ]

[EG] + [E]κ
(2.24)

This is the equation that is also derived in the deb book, Page 39, Eq. 2.12 (when multiplied
with structural volume, L3). We can further use Equation 2.23, introducing the somatic
maintenance rate coefficient k̇M = [ṗM ]/[EG], the scaled reserve densiy e = [E]/[Em] (where
[Em] is the maximum reserve density, which is taken as a constant), and the energy investment
ratio g = [EG]/(κ[Em]):

ṗC = E
v̇/L+ k̇M

1 + κ [E]
[EG]

(2.25)

= e[Em]L3 v̇/L+ k̇M

1 + eκ [Em]
[EG]

(2.26)

= [Em]L3

(
v̇

L
+ k̇M

)
eg

e+ g
(2.27)

2.2 The scaled standard model

Several formulations of deb models are available that are useful for different purposes. In the
previous section, I presented a formulation in terms of energy fluxes. This is not the most
practical one to work with in an ecotoxicological setting because of the dimension ‘energy’
that we will generally not have access to.

I will use the deb3 version with scaled reserves and maturity [19], which is phrased only in
terms of the dimensions length and time. Reserves and maturity are scaled with the maximum
assimilation rate per unit of surface area, which removes the unit ‘mole’ from the system (and
one parameter). All stage transitions are initiated by maturity levels; UH = U bH for birth
(start of feeding) and UH = UpH for puberty (start of investment in reproduction, and stop
investment in maturity). Note that the age a = 0 marks the start of the development of the
embryo in the egg; age a = ab is the age of birth, and a = ap is the age at puberty.

In this formulation, two compound parameters will be used to remove the dimension
‘energy’ from the complete parameter set: the somatic maintenance rate coefficient k̇M , and
the energy investment ration g, defined as:

k̇M =
[ṗM ]

[EG]
and g =

[EG]

κ[Em]
(2.28)

2.2.1 Reserve and mobilisation

The change in scaled reserve is given by:

d

dt
UE =

{
−SC if UH < U bH
fL2 − SC otherwise

with UE(0) = U0
E (2.29)
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It turns out to be handy to work with the scaled reserve density:

e = v̇
UE
L3

(2.30)

Under constant conditions, and the absence of toxic stress on feeding or assimilation, e = f .
The scaled mobilisation power is then calculated as:

SC =
ṗC
{ṗAm}

=
ṗC
v̇[Em]

(2.31)

=
L3

v̇

(
v̇

L
+ k̇M

)
eg

e+ g
(2.32)

= L2 ge

g + e

(
1 +

k̇M
v̇
L

)
(2.33)

2.2.2 Derivation of the growth equation

Growth can be seen as in deb context in terms of energy as follows:

d

dt
L3 =

1

[EG]

(
κṗC − [ṗM ]L3

)
(2.34)

Here, κṗC is the energy flux allocated to growth and somatic maintenance. The energy flux
needed for maintenance is deducted, and the remainder is divided by the energetic costs for
growth. I decided to work with scaled reserves to remove the dimension of energy. The scaled
mobilisation flux was SC , which relates to ṗC as:

ṗC = SC{ṗAm} (2.35)

Using this relationship, the growth equation becomes:

d

dt
L3 =

κ{ṗAm}
[EG]

SC −
[ṗM ]

[EG]
L3 (2.36)

There are two expressions for maximum length, that we both will use:

Lm =
κ{ṗAm}

[ṗM ]
=

v̇

k̇Mg
(2.37)

Because k̇M = [ṗM ]/[EG], we can use this equation to rewrite Eq. 2.36 to:

d

dt
L3 =

v̇

g
SC − k̇ML3 (2.38)

To change this from volumetric to length growth, we need to take care that d
dtL

3 = 3L2 d
dtL,

which leads to this equation:

d

dt
L =

1

3L2

(
v̇

g
SC − k̇ML3

)
with L(0) ≈ 0 (2.39)

This equation is different from the one given in [19], although it is mathematically equivalent.
I prefer this form as it reveals the close links with the maturation and reproduction process;
growth is the net result of the mobilised reserved that are allocated to growth and somatic
maintenance (κ is included in g), minus the maintenance needs.
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Filling in the equation for SC , and ‘some manipulation’ gives the well-known Von Berta-
lanffy equation:

d

dt
L = ṙB (eLm − L) with L(0) ≈ 0 (2.40)

where:

ṙB =
k̇Mg

3(e+ g)
and Lm =

v̇

k̇Mg
(2.41)

2.2.3 Maturation and reproduction

The change in scaled maturity is given by:

d

dt
UH =

{
κH((1− κ)SC − k̇JUH) if UH < UpH
0 otherwise

with UH(0) = 0 (2.42)

Note that UH(ab) = U bH and UH(ap) = UpH . The energy flux into the reproductive buffer is
given by:

d

dt
UR =

{
0 if UH < UpH
(1− κ)SC − k̇JUpH otherwise

with UR(0) = 0 (2.43)

At spawning events, the reproduction buffer will be converted to eggs. Ignoring the buffer,
the mean reproduction rate is given by:1

Ṙ =
κR
U0
E

d

dt
UR (2.44)

What triggers emptying of the reproduction buffer? Perhaps, filling of the buffer to a critical
level depending on structural size (UR = [URm]L3), some time interval (tR), external condi-
tions (e.g., temperature, rainfall, food conditions). At such an event, the buffer is converted
into a batch of eggs (∆R) as follows:2

∆R = floor

(
κRUR
U0
E

)
if UR = [URm]L3 or t = tR or ... (2.45)

The ‘floor’ function (rounding to lower integer) is needed as only whole eggs can be produced.
What happens to the remaining energy in the buffer, which was insufficient for the production
of one egg? It may either be lost, or kept in the buffer for the next reproductive event. If it
is kept in the buffer, UR is reset:

UR = UR −
U0
E∆R

κR
(2.46)

This assumes that the overhead costs for reproduction (1−κR) are only paid for the eggs that
were produced, not for the entire buffer at the moment of spawning. This sounds realistic, but
the numerical influence of this choice will anyway be small, especially when a large number
of eggs are produced per batch.

1In this case, we do not need to follow UR as a state variable. However, we can use Ṙ as a state; its
integrated counterpart is the cumulative reproductive output.

2When we work with a buffer, we do not need to use an additional state variable in our calculations. We
can simply re-use UH . For an adult, we can continue to build up UH , but consider that UR = UH − Up

H .
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One problem is left open: the determination of the scaled initial reserves in the egg, U0
E .

However, following the standard assumptions of the deb model, this quantity does not require
additional parameter. The initial reserves must be such that the embryo will hatch at the
same reserve density as its mother had at egg formation. The most intuitive way to solve
it would be to simply simulate the embryonic development with different values of U0

E until
we observe the correct reserve density at hatching. However, more efficient procedures are
available (see [14]).

When k̇J equals k̇M we have the situation where stage transitions take place at the same
structural length for different food levels. This situation is of special interest as a constant size
at puberty appears to be common in many of the invertebrates that are used as standard test
organisms in ecotoxicology. For this reason, I introduce the ratio of the two rate constants as
a new parameter (with a default value of 1). Similarly, I would like to introduce a parameter
for the ratio of the maturity at birth and at puberty:

k =
k̇J

k̇M
and ubpH =

U bH
UpH

(2.47)

The reason for introducing this new parameter is that the absolute value of UH is difficult
to interpret because of the non-intuitive dimensions. Furthermore, all U are scaled using
the maximum surface-specific assimilation rate. This rate depends on details of food quality
and might therefore differ between experiments. However, the ratio of maturity at birth
and puberty should be constant in a species under a much broader range of environmental
conditions.

This leaves the following complete set of parameters: g, v̇, k̇M , k, κ, κR, κR, UpH , ubpH . For
the assimilation part, we can either treat f as a model parameter or use the feeding module
to calculate f using {J̇XAm}, {Ḟm} and X.

2.2.4 Initial conditions at the start of an experiment

We can start our simulations at t = 0 at the moment of a freshly laid egg. However, life-
cycle toxicity tests are generally started with juveniles of which the age is (approximately)
known. In that case, it may be convenient to take t = 0 at the moment of hatching (especially
as the embryonic development might include a diapause). At hatching, maturity is known
(UH = U bH). Reserve density can be taken equal to that of the mother at egg production.
When the mothers come from a well-fed culture, it is appropriate to assume e = 1 for the
hatchling. The exact value usually has little impact as the reserves of the (small) hatchling
will rapidly reach a steady state with its food density in the test. The length at birth (Lb)
will have to derived from the initial reserves in the egg U0

E , and the parameter values.
It is also possible to start with t = 0 later in life. Let’s take the situation where length

at the start of the experiment is known. We need to obtain the value of the state variables
UE and UH at this point. The value for the reserves can be derived from rewriting Equation
2.30 (providing we can estimate e, for example,if we can assume e = 1). The value for the
maturity is more problematic. We can, of course, simulate the development from the moment
of hatching (or from the freshly produced egg).

debtool offers more efficient methods to derive Lb and UH at L > Lb.

2.3 Starvation responses

Problems on starvation occur when the somatic maintenance costs cannot be paid anymore.
This corresponds to the point where the the scaled reserve density is insufficient to maintain
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the actual structural size:

e <
L

Lm
where Lm =

v̇

k̇Mg
(2.48)

At this point, there is a whole range of options that the organism could follow. These
strategies will be highly specific, but here I will work out a few simple options. The first,
and simplest option, is to do nothing. Just allow d

dtL to become negative, and thus allow
shrinking of structure. The underlying assumption is that structure is used for maintenance,
and that burning a unit of structure yields exactly the amount of energy as was needed to
build this unit of structure (which hardly seems realistic, but may suffice as an initial guess).
If the animal is a juvenile, d

dtUH can become negative too, when maturity maintenance cannot
be paid anymore. Maturity is information, so there is nothing to burn here. However, we
could interpret this as a degradation of maturity when maturity maintenance cannot be paid
anymore. The degradation of maturity will than exactly match what is needed to pay maturity
maintenance (which also seems unrealistic). For mature animals, d

dtUR can become negative
so that the reproduction buffer is used to pay maturity maintenance.

Another option is to keep the complete metabolic organisation intact, but to maintain
current levels of structure and maturity from the reproduction buffer (conform [23]). Because
there is no change in structural volume anymore, the equation for the mobilisation of reserves
is extremely reduced.

2.3.1 Mobilisation under no-growth conditions

Let’s start from the equation for the volume-specific mobilisation power:

[ṗC ] = [E]

(
v̇

L
− ṙ
)

(2.49)

where ṙ is the volumetric growth rate. Under the simple starvation strategies that I present,
structural growth completely ceases. Therefore ṙ = 0 and L is constant. The equation for
[ṗC ] is therefore easily translated into an equation for the absolute power under no-growth
conditions:

ṗC = E
v̇

L
(2.50)

Because SC = ṗC/{ṗAm} and UE = E/{ṗAm}, we can rewrite this to the scaled mobilisation
flux:

SC = UE
v̇

L
(2.51)

And because:

e = v̇
UE
L3

(2.52)

we end up with the simple result:

SC = eL2 (2.53)
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2.3.2 Pay maintenance costs from the reproduction buffer

One option is to keep the complete metabolic organisation intact, but to maintain current
levels of structure and maturity from the reproduction buffer (conform [23]). Because there
is no change in structural volume anymore, the equation for the mobilisation of reserves is
extremely reduced:

SC = eL2 (2.54)

This simple result was obtained in the previous section for a constant structural volume.
Under starvation, this mobilisation is insufficient to maintain structural volume. First, we
need to calculate how large the allocated mobilisation rate to soma κSC needs to be, to just
match the needs for maintenance. This can be done from Eq. 2.39, by setting growth to
zero. First, I will write Eq. 2.39 slightly differently to show explicitly the mobilisation flux to
somatic maintenance and growth κSC (κ is otherwise hidden in the compound parameter g):

d

dt
L =

1

3L2

(
v̇

κg
κSC − k̇ML3

)
(2.55)

Solving for zero growth yields:

κSC =
k̇Mκg

v̇
L3 (2.56)

This is the amount that is needed for somatic maintenance alone. An alternative (and perhaps
more logical) way to derive this is to explicitly derive the scaled somatic maintenance flux
SM :

SM =
[ṗM ]L3

{ṗAm}
(2.57)

L−1
m =

[ṗM ]

κ{ṗAm}
=
k̇Mg

v̇
⇒ [ṗM ]

{ṗAm}
= κ

k̇Mg

v̇
(2.58)

SM = κ
k̇Mg

v̇
L3 (2.59)

The difference between the actual mobilisation flux SC for zero growth and the required
flux for somatic maintenance SM is than subtracted from the flow into the reproduction buffer,
changing the ODE for the buffer to:

d

dt
UR = (1− κ)SC − k̇JUpH −

(
k̇Mκg

v̇
L3 − κeL2

)
(2.60)

= (1− κ)SC − k̇JUpH − κL
2

(
k̇Mg

v̇
L− e

)
(2.61)

= (1− κ)SC − k̇JUpH − κL
2

(
L

Lm
− e
)

(2.62)

This can continue until the reproduction buffer is exhausted and d
dtUR becomes negative. At

that point, there may still be reserves left (e > 0), but the mobilisation is insufficient to yield a
flux large enough to cover the maintenance costs. When the reproduction buffer is exhausted,
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this scenario is almost equivalent to a change in κ to match somatic maintenance needs (a
change in κ would also affects the value of g). A modification of this strategy could be that
the organism stops emptying the reproduction buffer, or also reduces maturity maintenance
(which should have consequences somewhere, e.g., in the hazard rate).

For this scenario, one would have to think carefully about the availability of the energy
in the reproduction buffer; energy which has already been allocated to eggs. To what extent
can this energy be used again to fuel maintenance? Experiments with Daphnia suggest that
reserves early in egg formation can be used to increase survival under starvation [26]. For
juveniles, we might take the required energy for somatic maintenance out of the maturation
flux.

2.3.3 Minimise mobilisation from the reserve

The last option that I would like to discuss here is to only mobilise enough energy from the
reserves to fulfil the maintenance needs. This implies that:

d

dt
L = 0,

d

dt
UH = 0,

d

dt
UR = 0 (2.63)

I also assume that maturity maintenance costs are not paid anymore. It is not entirely
certain what happens to an organism when maturity maintenance is not paid anymore, but
an increase in the hazard rate and a decrease in the level of maturity (‘rejuvenation’) seem
plausible. In this scenario, the mobilisation from the reserves is recalculated to the minimal
flux to pay somatic maintenance:

SC =
k̇Mκg

v̇
L3 = κ

L3

Lm
(2.64)

This recalculated flux than has to be withdrawn from the scaled reserves UE (this might be
less or more than what can be maximally mobilised, which is eL2). This scenario can continue
until the reserves are fully depleted. However, you might also decide that no more reserves
can be mobilised than the maximum under normal conditions, so to include the condition
SC ≤ eL2.

When the food density increases again, the starvation scenario stops as soon as the energy
reserves UE are sufficient to support a mobilisation flux SC that can lead to positive growth
again. The deb book [15] has worked out more options, that allow for more realistic shrinking
of structure and rejuvenation.

2.4 The simplified standard model

The simplified system that we derive here follows from two additional assumptions:

1. There is a always a constant ratio between structure and maturity for juveniles and em-
bryos, also under (toxicant) stress. The start of investment into reproduction (puberty)
therefore occurs at a fixed structural length, and we do not need to follow maturity as
a state variable.

2. Egg costs are constant, unless there is a direct toxicant effect on them. This assumption
overrides the ‘maternal effect’ of deb theory (see [15]).

In contrast to the original debtox equations [16], we include the scaled reserve (e) as a dynamic
state variable. Thus, we do not have to assume that the reserve density is always in steady
state.
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Assumption 1 limits the parameters that are allowed to change under stress. For example,
if we increase the costs for structure, this implies a change in the length at puberty, unless
the costs for maturation are affected by the same factor. Similarly, a change in κ will affect
the length at puberty. To allow changing any arbitrary deb parameter, one would have to
use a full deb model (see [12]). The use of scaled reserves implies that we cannot incorporate
an effect on the energy conductance v̇ (as a change in v̇ would affect [Em] that is used to scale
the reserves, see next section).

2.4.1 Reserve dynamics

From the derivation in Section 2.1.3 (Eq. 2.15 and 2.9), it follows that (see also the deb book
[15] Page 39, Eq. 2.10-2.11):

d

dt
[E] = [ṗA]− [E]

v̇

L
=
{ṗAm}f − [E]v̇

L
(2.65)

The maximum reserve density is achieved ([E] = [Em]) when f = 1, and thus d
dt [E] = 0 when

[Em] = {ṗAm}/v̇. The scaled reserve density was defined as e = [E]/[Em], and because [Em]
is taken as constant, we can rewrite the reserve equation to:

d

dt
e = (f − e) v̇

L
(2.66)

When the dynamics of the reserves are fast, or when f is constant, we can take f = e, and
effectively ignore the reserve altogether.

2.4.2 Maturity is a constant fraction of structure

In this section, we will remove maturity as a state variable, using assumption 1 above. The
change in structural volume L3 and in the investment in maturity EH are given by the
following two equations:

d

dt
L3 =

1

[EG]

(
κṗC − [ṗM ]L3

)
(2.67)

d

dt
EH = κH

(
(1− κ)ṗC − k̇JEH

)
(2.68)

When maturity is always a constant fraction of structural volume, we can work with length
instead of maturity; investment in reproduction will always start at a constant structural size.
Both structure and maturity start at embryonic development approximately at zero. Thus
we demand that:

EH
L3

=
d
dtEH
d
dtL

3
=
EpH
L3
p

= [EH ] = constant (2.69)

and thus (note that k̇M = [ṗM ]/[EG]):
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d

dt
EH = [EH ]

d

dt
L3 (2.70)

κH

(
(1− κ)ṗC − k̇JEH

)
=

[EH ]

[EG]

(
κṗC − [ṗM ]L3

)
(2.71)

κH(1− κ)ṗC − κH k̇JEH =
κ[EH ]

[EG]
ṗC − [EH ]

[ṗM ]

[EG]
L3 (2.72)

κH(1− κ)ṗC − κH k̇J [EH ]L3 =
κ[EH ]

[EG]
ṗC − [EH ]k̇ML

3 (2.73)

κH
1− κ
[EH ]

ṗC − κH k̇JL3 =
κ

[EG]
ṗC − k̇ML3 (2.74)

For ṗC , we can include Eq. 2.27:

κH
(1− κ)[Em]

[EH ]
L3

(
v̇

L
+ k̇M

)
eg

e+ g
− κH k̇JL3 =

κ[Em]

[EG]
L3

(
v̇

L
+ k̇M

)
eg

e+ g
− k̇ML3(2.75)

κH
(1− κ)[Em]

[EH ]

(
v̇

L
+ k̇M

)
eg

e+ g
− κH k̇J =

κ[Em]

[EG]

(
v̇

L
+ k̇M

)
eg

e+ g
− k̇M (2.76)

κH
1− κ
[EH ]

H(L)− κH k̇J =
κ

[EG]
H(L)− k̇M (2.77)

We thus have only a single function H of L, times two constants, and minus two constants.
This equality can only hold when κH k̇J = k̇M , and when the factors before H(L) are the
same. This latter requirement translates into:

κH
1− κ
[EH ]

=
κ

[EG]
(2.78)

κH
1− κ
κ

[EG] = [EH ] (2.79)

We can use this result to obtain an expression that links EpH to Lp, because we would like to
use the latter as a model parameter (and remove the first):

κH
1− κ
κ

[EG] =
EpH
L3
p

(2.80)

EpH = κH
1− κ
κ

[EG]L3
p (2.81)

Thus, we now have a constraint for using a constant length at puberty (κH k̇J = k̇M ) and an
expression for how the length at puberty (L3

p) relates to the invested reserves into maturation
(EpH). Because we assume that EpH is constant, this implies that an increase in [EG] needs to

be accompanied by a decrease of κH by the same factor (note that k̇M includes [EG], so the
equality κH k̇J = k̇M still holds). Furthermore, a change in somatic maintenance costs k̇M
should be accompanied by the same change in maturity maintenance costs k̇J .
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2.4.3 Rewriting the reproduction rate

In this section, we will rewrite the reproduction equation in such a way that many of the model
parameters are combined into a new compound parameter, the maximum reproduction rate
Ṙm. Starting from the energy-based equation for reproduction, we can use the results derived
in the previous section (κH k̇J = k̇M and the expression for EpH in Eq. 2.81) to rewrite the
equation:

Ṙ =
κR
E0

(
(1− κ)ṗC − k̇JEpH

)
(2.82)

=
κR
E0

(
(1− κ)ṗC −

k̇M
κH

κH
1− κ
κ

[EG]L3
p

)
(2.83)

=
κR
E0

1− κ
κ

[EG]

(
κ

[EG]
ṗC − k̇ML3

p

)
(2.84)

Next, we need expressions for the mobilisation flux, which was already derived in Section
2.1.3 (Eq. 2.27), as well as the maximum mobilisation flux (without stress, with L = Lm
and e = 1). We need this maximum flux because we will write the reproduction equation in
terms of the maximum reproduction rate later on, to remove a number of parameters. For
that purpose, we introduce the maximum length in the controle Lm0, and parameters in the
control k̇M0 and g0 (remember that we do not consider stress on v̇ or κ as they violate the
simplifying assumptions). This is necessary to correctly introduce stress factors due to the
toxicant at a later stage. The maximum mobilisation power is:

ṗCm = [Em]L3
m0

(
v̇

Lm0
+ k̇M0

)
g0

1 + g0
(2.85)

Note that Lm0 = v̇/(k̇M0g0) is the maximum length in the control, and thus:

ṗCm = [Em]L3
m0

(
k̇M0g0 + k̇M0

) g0

1 + g0
(2.86)

= [Em]L3
m0k̇M0 (1 + g0)

g0

1 + g0
(2.87)

= [Em]L3
m0k̇M0g0 (2.88)

= [Em]v̇L2
m0 (2.89)

The maximum reproduction rate (in the control, at maximum size, and e = 1) is now given
by introducing the expression for ṗCm into Eq. 2.84, and using control parameters only (κR0,
[EG0], k̇M0) (note that g = [EG]/(κ[Em])):

Ṙm0 =
κR0

E0

1− κ
κ

[EG0]

(
κ

[EG0]
[Em]v̇L2

m0 − k̇M0L
3
p

)
(2.90)

=
κR0

E0

1− κ
κ

[EG0]

(
v̇

g0
L2
m0 − k̇M0L

3
p

)
(2.91)

=
κR0

E0

1− κ
κ

[EG0]k̇M0

(
L3
m0 − L3

p

)
(2.92)

The reproduction rate of Eq. 2.84 can be filled in with the regular mobilisation flux too:
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Ṙ =
κR
E0

1− κ
κ

[EG]

(
κ

[EG]
[Em]L3

(
v̇

L
+ k̇M

)
eg

e+ g
− k̇ML3

p

)
(2.93)

=
κR
E0

1− κ
κ

[EG]

(
L3

(
v̇

L
+ k̇M

)
e

e+ g
− k̇ML3

p

)
(2.94)

=
κR
E0

1− κ
κ

[EG]k̇M

((
v̇

k̇M
L2 + L3

)
e

e+ g
− L3

p

)
(2.95)

We can remove a number of parameters from this equation by calculating the ratio Ṙ/Ṙm0,
and use that to form an expression for Ṙ that includes Ṙm0 as parameter:

Ṙ

Ṙm0

=
κR
κR0

[EG]

[EG0]

k̇M

k̇M0

(
v̇
k̇M
L2 + L3

)
e
e+g − L

3
p

L3
m0 − L3

p

(2.96)

Ṙ =
Ṙm0

L3
m0 − L3

p

κR
κR0

[EG]

[EG0]

k̇M

k̇M0

((
v̇

k̇M
L2 + L3

)
e

e+ g
− L3

p

)
(2.97)

=
Ṙm0

L3
m0 − L3

p

κR
κR0

[ṗM ]

[ṗM0]

((
v̇

k̇M
L2 + L3

)
e

e+ g
− L3

p

)
(2.98)

The last step makes use of the fact that k̇M = [ṗM ]/[EG]. The stress-to-control ratios κR/κRo
and [ṗM ]/[ṗM0] are of course only relevant when there is exposure to a toxicant, otherwise
they are one and can be removed. These two model parameters only appear as a ratio.
The advantage is that a stress on κR or [ṗM ] does not require the absolute value of these
parameters. The stress factor s can simply be applied on the parameter Ṙm.

2.4.4 Rewriting the growth equation

Starting with the growth equation in terms of energetics (making use of k̇M = [ṗM ]/[EG]):

d

dt
L3 =

1

[EG]

(
κṗC − [ṗM ]L3

)
(2.99)

3L2 d

dt
L =

1

[EG]

(
κṗC − [ṗM ]L3

)
(2.100)

d

dt
L =

1

3

(
κṗC

[EG]L2
− k̇ML

)
(2.101)

Next, we can include Eq. 2.27 for the mobilisation rate (making use of g = [EG]/(κ[Em])):
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d

dt
L =

1

3

(
κ[Em]

[EG]
L

(
v̇

L
+ k̇M

)
eg

e+ g
− k̇ML

)
(2.102)

=
1

3

((
v̇ + k̇ML

) e

e+ g
− k̇ML

)
(2.103)

=
1

3

(
v̇

e

e+ g
+ k̇ML

e

e+ g
− k̇ML

)
(2.104)

=
1

3

(
v̇

e

e+ g
+ k̇ML

(
e

e+ g
− 1

))
(2.105)

=
1

3

(
v̇

e

e+ g
+ k̇ML

e− (e+ g)

e+ g

)
(2.106)

=
1

3(e+ g)

(
v̇e− k̇MLg

)
(2.107)

=
k̇Mg

3(e+ g)

(
e
v̇

k̇Mg
− L

)
(2.108)

This is the Von Bertalanffy result of deb theory, as long as the parameters are constant.

2.5 Link to physical measures of body size

The amount of structure of an organism cannot be directly observed. So how do we relate
structural length L to measurements of ‘real’ body size Lw? In an organism that grows
strictly isomorphically, any length measure is proportional to the structural length. However,
the proportionality constant depends on how the length is taken. The proportionality is the
shape-correction coefficient:

L = δMLw (2.109)

The shape coefficient is specific for each length measure. It is difficult to obtain though, as the
real structural length cannot be directly obtained from measurements. As an approximation,
one could use (assuming that reserves do not contribute appreciably to the total volume):

δM ≈
V

1/3
w

Lw
(2.110)

The physical volume or the weight is a weighted sum of structure, reserve and reproduction
buffer (and possibly gut contents). The physical volume is given by:

Vw = L3 + ωV (e+ eR)L3 with eR = v̇
UR
L3

(2.111)

where ωV is a dimensionless parameter for the contribution of the reserves (including the
reserves in the reproduction buffer) to the total volume.

In the absence of an appreciable reproduction buffer, and when e is constant, the physical
volume is proportional to structural volume L3. The proportionality constant than only
matters when you want to compare parameter values between species, or when comparing life
history at different food levels.

The wet and dry weight of an organism is related to structural volume in a similar way,
accounting for the density of the wet or dry structure (dV and dV d):
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Ww = dV L
3 (1 + ωw(e+ eR)) (2.112)

Wd = dV dL
3 (1 + ωd(e+ eR)) (2.113)

One way to estimate ω values is to follow volume or weight under mild starvation. Under
starvation, the organism will initially only burn reserves, but under prolonged starvation, it
will also burn structure and/or the contents of the reproduction buffer. Another option is
to follow the volume or weights of individuals on egg production (for organisms that sport
a substantial reproduction buffer). Alternatively (and probably most practically), we can
estimate ω values from the egg size. The egg is completely made up of reserve, and in the
standard deb animal, there is only one type of reserve (although the water content of the egg
may differ from that of the juvenile and adult).

For example, the volume of a single egg V 0
w is given by:

V 0
w = ωV e

0
RL

3 with e0
R = v̇

U0
E

L3
(2.114)

Where e0
R is the scaled reproduction buffer density corresponding to a single egg. And thus:

ωV =
V 0
w

v̇U0
E

(2.115)

As a last option, we can use the add-my-pet defaults for unknown parameters. Following
the deb book (Section 3.2), the ωV is given by:

ωV = [Em]
wE
dEµE

(2.116)

ωw = [Em]
wE
dV µE

(2.117)

ωd = [Em]
wEd
dV dµE

(2.118)

For three of these parameters, we can use the defaults as given in the add my pet approach.
For µE (the chemical potential of reserve), a default value of 550 ·103 J/mol is taken. Further,
we can take dE = dV = 1 g/cm3, and dV d = 0.1 g/cm3. The values for wE and wEd (molecular
weights of wet and dry reserve) can be estimated from the general elemental composition of
reserve (assuming that wet reserve contains a factor of 10 more H and O relative to C):

wEd = 1 · 12 + 2 · 1 + 0.75 · 16 + 0.2 · 14 = 28.8 g/mol (2.119)

wE = 1 · 12 + 20 · 1 + 7.5 · 16 + 0.2 · 14 = 154.8 g/mol (2.120)

We can use these defaults to provide a default for the values for the ω’s (and replacing
[Em] = {ṗAm}/v̇):

ωV = [Em]
154.8

1 · 550 · 103
=
{ṗAm}
v̇

2.8 · 10−4 (2.121)

ωw = [Em]
154.8

1 · 550 · 103
=
{ṗAm}
v̇

2.8 · 10−4 (2.122)

ωd = [Em]
28.8

0.1 · 550 · 103
=
{ṗAm}
v̇

5.2 · 10−4 (2.123)

Using defaults of v̇ = 0.02 cm/d and {ṗAm} = 22.5 z J/cm2/d, we see that the value for ωV
and ωw is expected to be around 0.32 z, and ωV d around 0.59 z.
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2.6 Mortality in DEB models

In a deb context, mortality is treated as a chance process. Chance processes in time are
modelled using the hazard rate. The hazard rate is the instantaneous probability to die, or
more precisely:

ḣ(t) = lim
∆t→0

S(t)− S(t+ ∆t)

∆tS(t)
= − 1

S

d

dt
S (2.124)

Thus, the hazard rate times a very small time increment gives the probability to die in
that interval, given that you are alive at the start of that interval. In experiments with a short
duration, the hazard rate can usually be taken constant. However, for longer durations, we
will probably see an increase in the hazard rate with the age of the organisms (senescence).
If we do not feed the organisms in the test, we will also see an increase in the hazard rate due
to starvation.

If we know the hazard rate as function of time, we can calculate the survival probability
over time as:

S(t) = exp

(
−
∫ t

0
ḣ(τ) dτ

)
(2.125)

Ageing or senescence is treated as an effect of a toxicant; in this case, produced by the
organism itself, as a byproduct of metabolism.

2.6.1 Tolerance distributions

We can define the spread of any distribution that is symmetrical on log-scale by a spread
factor Fs. I will define Fs as the factor between the median α and the 2.5-th and 97.5-th
percentile. The range between α/Fs and α × Fs thus covers 95% of the distribution. For
the lognormal distribution, we can link Fs to the standard deviation of the associated normal
distribution after log transformation. After log transformation, we can find the lower 2.5th
percentile at:

0.025 = F (−1.96σlog + logα) (2.126)

where F is the cumulative normal distribution, σlog is the normal standard deviation after
log transformation, and logα the mean of that distribution (which equals the median of the
log-normal distribution).

α

Fs
= 10−1.96σlog+logα (2.127)

α

Fs
= α10−1.96σlog (2.128)

1

Fs
= 10−1.96σlog (2.129)

− logFs = −1.96σlog (2.130)

logFs
1.96

= σlog (2.131)

The fraction survival thus follows from the cumulative density function of the normal distri-
bution:
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S(x) = 1− F (log x; logα, σlog) (2.132)

For the log-logistic distribution, we can also define the spread Fs in the same way. The
fraction of surviving individuals is the reciprocal of the CDF at a value of the dose metric x:

S(x) =
1

1 +
(
x
α

)β (2.133)

where α is the median of the tolerance distribution, and β the shape parameter. We define
Fs in such a way that at x = α× Fs the survival S = 0.025. Thus:

1

1 +
(
x
α

)β = 0.025 (2.134)

(x
α

)β
=

1

0.025
− 1 (2.135)

x = α (40− 1)1/β (2.136)

Fs =
x

α
⇒ Fs = 391/β (2.137)

β =
ln 39

lnFs
(2.138)

Or, as Wikipedia puts it more generally, the p-th quantile can be calculated from the inverse
cumulative distribution:

F−1(p;α, β) = α

(
p

1− p

)1/β

(2.139)

Fs =

(
0.975

1− 0.975

)1/β

(2.140)

2.7 Changes in temperature

We can assume that all metabolic rate constants are affected by temperature by the same
factor. The elimination rate for chemicals is a special case, as it is not a metabolic rate con-
stant (unless the elimination is dominated by biotransformation). Here, I give the expression
to calculate the maintenance rate coefficient k̇M at temperature T from its reference value
k̇ref
M at the reference temperature Tref:

k̇M (T ) = k̇ref
M exp

(
TA
Tref

− TA
T

)
(2.141)

where TA is known as the Arrhenius temperature. Note that all T are here as absolute
temperature in Kelvin.

Temperature also affects the maximum surface-specific assimilation rate {ṗAm}. This
parameter is used to scale all of the reserves. Changing the scaling over time is not re-
ally advisable. We can scale with {ṗAm} at a reference temperature though. Introduce a
temperature correction factor for all rates:

FT = exp

(
TA
Tref

− TA
T

)
(2.142)
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Now rewrite the reserve dynamics with this factor:

d

dt
E = fL2FT {ṗrefAm} − ṗC (2.143)

ṗC = [Em]L3

(
v̇

L
+ k̇M

)
eg

e+ g
(2.144)

We now scale all energy-containing states with the reference assimilation {ṗrefAm} to obtain UE
and SC (note that {ṗrefAm} = v̇ref[Em]):

d

dt
UE = fL2FT − SC (2.145)

SC =
L3

v̇ref

(
v̇

L
+ k̇M

)
eg

e+ g
(2.146)

SC =
L3

v̇ref

(
v̇refFT
L

+ k̇ref
MFT

)
eg

e+ g
(2.147)

SC = L2FT

(
1 +

k̇ref
M

v̇ref
L

)
eg

e+ g
(2.148)

For the growth equation:

d

dt
L3 =

1

[EG]
(κṗC − ṗM ) with L(0) ≈ 0 (2.149)

=
κ{ṗrefAm}

[EG]
SC −

ṗM
[EG]

(2.150)

=
v̇ref

g
SC − FT k̇ref

ML
3 (2.151)

This derivation makes use of the relationship given in Equation 2.37. The final body size
equation is thus:

d

dt
L =

1

3L2

(
v̇ref

g
SC − FT k̇ref

ML
3

)
(2.152)

For maturation and reproduction, only application of the correction factor FT on k̇ref
J is needed.

2.8 Deviating growth curves

2.8.1 Slow initial growth

One possibility to include an initial food limitation for juveniles was presented by [6]. The
scaled functional response was taken as a hyperbolic function in structural volume:

f(L) = f

(
1 +

L3
f

L3

)−1

(2.153)

There is nothing much mechanistic about this function, but it worked well for nematodes.
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2.8.2 Acceleration through a V1-morphic stage

For a number of species, the feeding stages grow substantially faster than the embryo. In
other words, the parameter set for the juvenile/adult yields predictions for the embryonic
stage that are too short. One way to solve this issue is to assume an acceleration through
a V1 stage between birth and ‘metamorphosis’ (at maturity level U jH) [18, 1]. V1 morphy
implies that v̇ and {ṗAm} need to be multiplied by a factor δ, which depends on body size:

UH < U bH → δ = 1 (2.154)

U bH < UH < U jH → δ =
L

Lb
(2.155)

UH > U jH → δ =
Lj
Lb

(2.156)

For the unscaled model, we can simply apply this factor on v̇ and {ṗAm}. The only thing to
take care of is that Lj is not known before we start the model run. We thus have to remember
its value when the organism reaches that point in its development.

For the scaled model, we first rewrite the reserve dynamics with this factor:

d

dt
E = fL2δ{ṗAm} − ṗC (2.157)

ṗC = [Em]L3

(
δv̇

L
+ k̇M

)
eg

e+ g
(2.158)

Now we can scale with {ṗAm}, which is now the specific assimilation of the embryo:

d

dt
UE = fL2δ − SC (2.159)

SC =
L3

v̇

(
δv̇

L
+ k̇M

)
eg

e+ g
(2.160)

SC = L2

(
δ +

k̇M
v̇
L

)
eg

e+ g
(2.161)

The growth, maturity and reproduction do not directly depend on v̇ and {ṗAm} (only through
SC). The v̇ that appears in the growth equation is the one for the embryo (because SC was
scaled to the embryonic specific assimilation). This is quite comparable to the derivation for
temperature effects in the previous section, but without the effects on maintenance. Note
that the final size is now δLm.

2.9 Alternative rules for hatching

In the standard deb model, EpH is a model parameter, and the egg costs (E0) have to be
found through iteration to ensure hatching of the embryo with the same reserve density as
its mother (the maternal effect). Instead of hatching at a fixed maturity level, we can also
assume hatching when the embryo reaches e = 1, and use E0 as a model parameter. This
allows for more freedom for the mother to play with investment per egg (as is often observed).
EbH is than a model output, and not a parameter.
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In Daphnia, hatchling size increases with the size of the mother, and increases with a
decrease in food level (opposite to the deb prediction). Furthermore, exposure to a partic-
ular compound leads to the production of more but smaller offspring, which also cannot be
explained in the standard framework. It seems more intuitive to see this as a change in the
investment per egg than as a change in maturity at birth. When hatchling size increases with
size of the mother, we can be assume a linear increase with length as a first approach. When
we know egg costs at one specific size (U0∗

E at L∗), we can calculate them at any other size
with a proportionality α:

U0
E = α(L− L∗) + U0∗

E (2.162)



Chapter 3

Toxicokinetics

3.1 Deriving the one-compartment model from diffusion

First, consider a box filled with water, floating in a well-mixed swimming pool with water.
At a certain time point, an amount of chemical is dropped in the pool; the outside walls of
the box allow the chemical to pass in both directions. The transport of chemical between
the swimming pool and the box takes place through molecular diffusion (the box is just like
the pool considered to be well mixed). According to Fick’s first law, diffusion of a chemical
in a single solvent is proportional to the surface area for exchange and the concentration
difference between two regions ∆C. The surface area for diffusive exchange is proportional
to the volumetric length of the box squared (the proportionality is determined by a shape
correction δQ), assuming it does not change in shape. The mass flux is thus given by (MQ is
the moles of toxicant in the box):

d

dt
MQ = v̇Q(δQL)2∆C (3.1)

The proportionality constant v̇Q is the ratio of the diffusion coefficient and the distance
over which transport takes place. This constant is a conductance (dimensions of a length
per time) and is known in environmental chemistry as a mass-transfer coefficient or ‘piston
velocity’. The chemical conductance depends on the chemical (mainly on molecular weight,
when considering transport in a single solvent), on the nature of the interface, and on the
temperature, but does not depend on the size of the box. We will discuss the nature of this
conductance in Section 3.2.

We can change this mass flux into a concentration change by dividing both sides of Eq.
3.1 by the volume of the box V . However, the volume may not be constant; the box may
grow or shrink in a particular manner (however, let’s assume it does not change in shape, so
all growth and shrinking is isomorphic). Using the product rule for the derivative:

d

dt
[MQ] =

d

dt
MQV

−1 = V −1 d

dt
MQ +MQ

d

dt
V −1 (3.2)

and the chain rule for the last term:

d

dt
[MQ] = V −1 d

dt
MQ −MQ

1

V 2

d

dt
V (3.3)

=
1

V

d

dt
MQ − [MQ]

1

V

d

dt
V (3.4)
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This equation, we can use to rewrite Eq. 3.1, noting that 1/V d
dtV = d

dt lnV :

d

dt
[MQ] = v̇Q

(δQL)2

V
∆C − [MQ]

d

dt
lnV (3.5)

The last term accounts for the effects of a change in volume on the concentration. The
parameters in front of the concentration gradient ∆C together form the ‘elimination rate
constant’ k̇e, which is the concentration-specific elimination rate from the box. Therefore, k̇e
is given by:

k̇e = v̇Q
(δQL)2

V
=
v̇Qδ

2
Q

L
(3.6)

When the box changes in size, the surface:volume ratio changes, which implies that k̇e is not a
constant anymore but is proportional to surface area/volume, and therefore scales with L−1.
Even though k̇e is a function of the size of the box, we can still work with an elimination
rate constant as a parameter, but we would have to define a reference situation. One possible
reference is the situation where L = Lm0:

k̇ref
e =

v̇Qδ
2
Q

Lm0
(3.7)

In this way, k̇ref
e has the interpretation of the elimination rate of an organism at the maximum

size reached under control conditions, Lm0 (smaller individuals will have a larger elimination
rate). Thus, the elimination rate constant can be written as a modification of the reference
rate constant:

k̇e = k̇ref
e

Lm0

L
(3.8)

We still need to think about ∆C. In ecotoxicology, we are not dealing with a chemical in
a single solvent but with the transfer from the environment to an organism. This can be
considered as a situation with two solvents (still, a rather heroic simplification). We cannot
directly compare the concentration in the environment to the concentration in the organism,
but we can use the difference between the actual and the final concentration as the driving
force:

∆C = [MQ]∞ − [MQ] = PV dcd − [MQ] (3.9)

With that, the full equation for the body density of toxicant becomes:

d

dt
[MQ] = k̇ref

e

Lm0

L
(PV dcd − [MQ])− [MQ]

d

dt
lnV (3.10)

= k̇ref
e

Lm0

L
(PV dcd − [MQ])− [MQ]

3

L

d

dt
L (3.11)

Here, it is written in terms of a single rate constant (the ‘elimination’ rate constant, k̇e)
and a partition coefficient (the bioconcentration factor, PV d). This formulation is completely
equivalent to the one with two rate constants (for uptake and elimination) that is also com-
monly used. I prefer this formulation for its link with diffusion: the flux into the organism is
determined by the concentration gradient (corrected for the differences in affinity using the
partition coefficient).
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3.1.1 The scaled internal concentration

We cannot estimate PV d from effects data alone. When measured internal concentrations are
not available, we have to resort to scaling: both sides of Eq. 3.1 can be divided by PV d.
The scaled version of the internal concentration (cV = [MQ]/PV d) has the dimensions of an
external concentration (in equilibrium, cV∞ = cd, for constant cd):

d

dt
cV = k̇ref

e

Lm0

L
(cd − cV )− cV

3

L

d

dt
L (3.12)

For organisms that do not change in size appreciably, this equation can be simplified by
removing the size influence (there is no need for k̇ref

e anymore):

d

dt
cV = k̇e (cd − cV ) (3.13)

3.2 The nature of the chemical conductance

Elimination rates depend on the chemical; they tend to decrease with increasing hydrophobic-
ity. The only chemical-specific component in Eq. 3.6 is the conductance v̇Q. This conductance
will undoubtedly depend on details of the interface between the organism and its environment.
It is safe to assume that chemicals need to be dissolved in a water phase before they can cross
biological membranes. Therefore, if we consider uptake as a diffusion process, we have to
consider the transport from the water phase, across a lipid membrane, into the organism.

In environmental chemistry, transport from one phase to another (e.g., water to air)
is generally described by the ‘two-film model’ (see e.g., [24]). This model considers that
the bulk of the medium is well mixed, but that there is a stagnant boundary layer that
‘sticks’ to each side of the interface. Transport through these boundary layers has to rely
on molecular diffusion, which is slow. The total resistance for diffusion is given by the sum
of the chemical’s resistances in each phase (the resistance of the interface itself is usually
ignored). Strictly speaking, the resulting model is not a ‘one-compartment model’ anymore
as the concentration is not homogeneous within the phase. In the stagnant boundary layer,
there is a concentration gradient between the bulk concentration and the concentration at
the interface. The mathematics of this model are rather complex (see [17]), but usually, a
somewhat crude approximation is made. When we assume that the flux across the interface
is steady, the concentration profiles at each side remain constant, and the model simplifies
extremely. Of course, a constant flux is unlikely to persist for long in a system of limited
capacity such as a living organism, nevertheless, this assumption seems to provide an adequate
approximation.

In steady flux, we obtain a one-compartment model for the organism again, when we can
ignore the volume of the unstirred boundaries. The elimination rate than depends on the
total conductance v̇Q, which is made up of the conductances of the chemical in water v̇Qw
and membrane lipids v̇QV , and on the partition coefficient:

v̇Q =

(
1

v̇QV
+
PV d
v̇Qw

)−1

(3.14)

Note that I assume that the membrane side is part of the structure. Therefore I indicate the
conductance and the partition coefficients with a subscript for structure (V ). The partition
coefficient is used to translate the water conductance (dimension lt−1) to the organism per-
spective that is needed for the total conductance (dimension Lt−1). Also note that this model
is exactly skew symmetric. That is, we can change the perspective from organism to water and
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obtain the same relations. The relationship between the elimination rate from the organism
to the water phase and the organism-water partition coefficient is the same as the relationship
between the elimination rate from water to the organism is with the water-organism partition
coefficient.

The two conductances do not depend very much on chemical properties (mainly on molec-
ular weight). Therefore, at low values of the bioconcentration factor, the total conductance
(and therefore the elimination rate) hardly depends on PV d. At high values of the bioconcen-
tration factor, the elimination rate decreases proportional to PV d.

Kooijman [15] promotes a square-root relationship between the elimination rate and the
octanol-water partition coefficient (Pow). I don’t endorse this relationship for several reasons.
First, and least important, the elimination rate should be related to PV d and not Pow. Even
though these two are correlated, organisms do not contain octanol. My other reason is that
the square-root relationship follows from the very strict one-compartment assumption that
both phases (organism and the water phase in the environment) are well mixed, up to the
interface. In my opinion, this assumption is less defensible than the assumption of ‘steady
flux’ across two stagnant boundary layers. In artificial membrane systems, the existence of
these stagnant boundaries (and their effect on diffusive resistance) have been experimentally
confirmed [3]. Furthermore, the predictions of the two-film steady-flux model for the rate
constants in SPME-coated fibers are extremely accurate [17]. However, in organisms, the
observations contain too much scatter to distinguish between these two alternatives. A final
piece of evidence is the observation that dissolved organic carbon can enhance the uptake of
PAHs in organisms and fibers, when the water-side film is rate limiting [25]. This strongly
suggests that such a film exists and that it can be rate limiting.

Even though it would be nice to predict elimination rates for untested compounds, the
above discussion is of limited relevance for toxic effects, in my opinion. These elimination
rates are at best relevant for whole-body residues, and these concentrations are probably not
directly relevant for toxic effects (see main text).

3.3 Considering reserve and structure

Changes in composition due to varying food levels and/or reproductive behaviour has logical
effect on toxicokinetics in deb animals. In the following, I work out these effects on toxicoki-
netics, under the assumption that the internal redistribution between structure, reserves and
reproduction buffer is fast (relative to the exchange with the environment). First, reserve and
reproduction buffer are assumed to have the same composition, an assumption that is later
on loosened.

3.3.1 Same composition of reserves and structure

In this section, we complicate things a little further by acknowledging the fact that reserves
and reproduction buffer add to the total physical volume. First, we assume that reserves and
reproduction buffer behave exactly the same as structure for toxicokinetics (they thus have
the same composition). Instead of the structural volume V , we therefore have to consider
the (dynamics of) the physical volume Vw. First, we assume that the exchange with the
environment occurs through structure only; and thus that the surface area for exchange is
proportional to L2. think for example of fish, where the main surface area for exchange is the
gills, or situations where the main route of uptake is across the gut wall.

The physical volume is made up from contributions of structure, reserve and reproduction
buffer:
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Vw = V + (e+ eR)ωV V where V = L3 (3.15)

The scaled buffer eR is defined as:

eR = v̇
UR
L3

(3.16)

The elimination rate constant depends on the ratio of the surface area for exchange and the
volume of interest. The volume is now the physical volume, and not the structural volume.
Therefore, k̇e is given by:

k̇e = v̇Q
(δQL)2

Vw
= v̇Q

δ2
QL

2

V + (e+ eR)ωV V
=
v̇Qδ

2
Q

L

1

1 + (e+ eR)ωV
(3.17)

Interestingly, this equation shows that the elimination rate not only depends on structural
length but also on the reserve density and the filling of the reproduction buffer. More reserves
implies a lower elimination rate. This is not surprising as reserves add to the total volume,
but not to the surface area for exchange (at least, that is what I have assumed).

We can still work with an elimination rate constant as a parameter, but we would have
to define a reference situation. One possible reference is the situation where L = Lm0, e = 1
and eR = 0:

k̇ref
e =

v̇Qδ
2
Q

Lm0

1

1 + ωV
(3.18)

Thus, the elimination rate constant can be written as a modification of the reference rate
constant:

k̇e = k̇ref
e

Lm0

L

1 + ωV
1 + (e+ eR)ωV

(3.19)

When we only deal with situation under ad libitum food and no effects on assimilation (e = 1)
and when we can ignore the contribution of the reproduction buffer, we obtain:

k̇e = k̇ref
e

Lm0

L
(3.20)

We can also assume that the area for exchange is determined by the physical volume,
instead of the structural volume. Think for example of the situation where the outer surface
area of an organism is the exchange area (e.g., an earthworm that does not feed on soil). We
obtain:

k̇e =
v̇Qδ

2
Q

V
1/3
w

=
v̇Qδ

2
Q

(V + (e+ eR)ωV V )1/3
=

v̇Qδ
2
Q

L (1 + (e+ eR)ωV )1/3
(3.21)

Similarly, we can introduce a reference rate constant at L = Lm0, e = 1 and eR = 0, which
leads to:

k̇e = k̇ref
e

Lm0

L

(
1 + ωV

1 + (e+ eR)ωV

)1/3

(3.22)

Again, when we only deal with situation under ad libitum food and without effects on assim-
ilation (e = 1) and when we can ignore the contribution of the reproduction buffer, we obtain
the simple Eq. 3.6. However, it is unlikely that changes due to reserve and reproduction
buffer lead to an isomorphic change in size. To account properly for this option thus would
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require considering these shape changes (which might not be trivial). Again, when we only
deal with situation under ad libitum food and without effects on assimilation (e = 1) and
when we can ignore the contribution of the reproduction buffer, we obtain the simple k̇e as
in Eq. 3.20.

Because the physical volume Vw can change in time rather suddenly (when the reproduc-
tion buffer is emptied), it is perhaps easier to keep the mass flux equation for MQ, and not
go to concentrations with an ode:

d

dt
MQ = k̇eVw

(
PV dcd −

MQ

Vw

)
(3.23)

= k̇eV

(
PV dcd (1 + (e+ eR)ωV )−

MQ

V

)
(3.24)

The total mass of chemical in the body is made up of parts in each compartment, structure,
reserve and reproduction buffer. However, in this situation, the concentration is the same in
each compartment, MQ/Vw. What happens during a spawning event? Probably the main
part of the reproduction buffer is turned into a batch of eggs. Some reserves, not enough to
turn into a single egg, might stay in the buffer or may be lost. Let’s assume it stays in the
buffer, and that from the total reproduction buffer UR, an amount U0

E∆R is used to make
eggs and leaves the body. The remainder, with the associated compounds, is assumed to stay
in the mother. The production of eggs leads to a decrease in physical volume, from resetting
of the reproduction buffer. Further, there is a decrease in the total amount of chemical in the
body. Of the chemical in the reproduction buffer, some leaves in the eggs, and some stays (the
fraction that was not enough to build eggs, and the chemicals associated with the fraction
of the buffer that is lost as overhead). What leaves is the fraction associated with the eggs,
which is the concentration in the reproduction buffer (equal to the whole body) times the
total volume of eggs produced:

∆MQ =
MQ

Vw
e0ωV V∆R (3.25)

where e0 is the scaled energy content of a single egg:

e0 =
E0

Em
= v̇

U0
E

L3
(3.26)

Interestingly, these assumptions lead to slight increase in the mother’s whole-body concen-
tration, because part of the buffer is burnt off as overhead in the production of eggs (or:
e0∆R < eR).

Apparently, for the concentration it does not matter much that there are spawning events.
The only things that matters is that the presence of reserves and reproduction buffer influence
the elimination rate constant, and that the change in structure and reserves, and the build-up
of the reproduction buffer, influences growth dilution.

3.3.2 Different composition of reserves and structure

In this section, I present the situation were the reserves and reproduction buffer have a
different composition than structure, and thereby a different affinity for the chemical. The
total mass of chemical in the body is made up of parts in each compartment, structure, reserve
and reproduction buffer:
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MQ = MQV +MQE +MQR (3.27)

Let’s assume that the internal redistribution between these compartments is fast, relative to
the exchange with the outside environment. Further, assume that the reproduction buffer
has the exact same properties as the reserves. This implies that we can treat the system as
a one-compartment model, although the total partition coefficient is now a weighted sum1 of
the partition coefficients for structure PV d and reserve PEd:

PWd =
MQ

cdVw
=
PV dV + PEd(e+ eR)ωV V

Vw
(3.28)

Next, I introduce the partition coefficient PEV as the ratio between the concentrations in
reserve (including the reproduction buffer) and structure:

PEV =
MQE +MQR

(e+ eR)ωV V

V

MQV
=
PEd
PV d

(3.29)

Now, I can rewrite Eq. 3.28; after some manipulation:

PWd = PV d
1 + PEV (e+ eR)ωV

1 + (e+ eR)ωV
(3.30)

This equation shows that when PEV = 1, there is no effect on the total partition coefficient,
PWd = PV d.

The total chemical mass in the organism changes according to a one-compartment model,
with time-varying parameters:

d

dt
MQ = Vwk̇e

(
PWdcd −

MQ

Vw

)
(3.31)

The elimination rate k̇e also needs to be modified when reserve and structure have a different
composition. Now, we cannot simply add both volumes; we need to convert the reserve
and reproduction buffer to an equivalent volume of structure using PEV . When exchange is
assumed to related to a structural surface, we can modify Eq. 3.19:

k̇e = k̇ref
e

Lm0

L

1 + ωV
1 + PEV (e+ eR)ωV

(3.32)

If exchange to occurs through the total surface, we can modify Eq. 3.22:

k̇e = k̇ref
e

Lm0

L

(
1 + ωV

1 + PEV (e+ eR)ωV

)1/3

(3.33)

In Section 3.2, I explained that elimination rates depend on the bioconcentration factor, and
here we have a situation that the whole-body partitioning PWd can change in time. Should this
also affect the elimination rate? Apart from the changes in elimination rate brought about by
changes in representative volume (as implemented above), I do not think we need additional
changes. The elimination rate depends on the properties of the interface, and thus (probably)
on membrane lipids. I think it is safe to assume that the relevant partition coefficient depends
on a structural component, which does not change with a change in reserves or reproduction
buffer. Therefore, I think it is safe to assume that k̇ref

e depends on PV d, which remains constant
in time (because of strong homeostasis, see also Section 3.2).

1I weigh with the volumes as the P∗ are also on volume basis. This is contrary to common practice of
expressing bioconcentration per (wet, dry or lipid) weight of organism.
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It is probably easiest to follow the total mass of chemical, and not change the ODE to
concentrations. Especially because the total volume might change due to growth, starvation
(decrease of reserve), and reproduction (decrease of reproduction buffer). Furthermore, re-
production also may lead to a decrease in the total amount of chemical in the body due to
transfer to the eggs. Keeping things on mass basis facilitates the mass balance. Any time we
need the total concentration in the organism, we can calculate MQ/Vw. This concentration
is on a volume basis, so a translation to weights would require the total density (which is a
weighted sum of the densities of structure and reserve).

We can fill in Eq. 3.30 for PWd:

d

dt
MQ = Vwk̇e

(
PV d

1 + PEV (e+ eR)ωV
1 + (e+ eR)ωV

cd −
MQ

Vw

)
(3.34)

= V k̇e

(
PV d (1 + PEV (e+ eR)ωV ) cd −

MQ

V

)
(3.35)

= k̇e (PV dcdV (1 + PEV (e+ eR)ωV )−MQ) (3.36)

The toxic effects are most likely related to the concentration in the structure and not to
the total body concentration. Further, the concentration in the eggs will likely be the same
as the concentration in the reproduction buffer. Therefore, we also need access to MQV and
MQR. From Eq. 3.27 it follows that MQE +MQR = MQ −MQV , which we can introduce in
Eq. 3.29:

PEV =
MQ −MQV

(e+ eR)ωV V

V

MQV
(3.37)

which we can manipulate until:

PEV (e+ eR)ωV =
MQ

MQV
− 1 (3.38)

and thus:

MQV =
MQ

PEV (e+ eR)ωV + 1
and MQR =

eR
e+ eR

(MQ −MQV ) (3.39)

An interesting consequence is that if the organism is starved, the concentration in the structure
will increase, at least when k̇e is small compared to the decrease rate of e. This is known
in migrating birds to cause problems: during migration, toxicants stored in the reserves are
mobilised, which can kill the bird. This example support the idea that toxic effects are most
likely related to the concentration in structure and not in the whole body. The concentration
in structure can at any moment be calculated as MQV /V = [MQV ], and related to metabolic
processes.

What happens at spawning? We can use the scaled reserve density of Eq. 3.26 again.

The total amount in the body is reduced by the amount in the reproduction buffer that
is used for egg production (assuming that the remainder of the reserves, together with the
associated toxicants, stays in the reproduction buffer). I take the total amount of chemical
in the reserves and the buffer, and multiply it by the fraction of the (scaled) reserves that is
actually transferred to eggs. This is the change in the total amount of chemical in the body:
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∆MQ = −e0∆R

eR
MQR (3.40)

= − e0∆R

e+ eR
(MQ −MQV ) (3.41)

e0 = v̇
U0
E

L3
(3.42)

where e0 is the scaled reserves in a single egg (scaled to the maximum reserve density of the
mother). The reproduction efficiency κR is already included through the calculation of ∆R.
I assume that chemicals are transported only with the part of the reproduction buffer that
actually makes it into the eggs. The remainder of the buffer (insufficient to make a whole egg)
stays in the buffer, and the fraction 1 − κR is lost as overheads. I assume that the chemical
load associated associated with these fractions of the buffer also stays in the mother.

Even though technically, the amount is not taken from MQ but from MQR only, this does
not matter as I assumed rapid redistribution between the compartments. Furthermore, I
would only like to follow the change in MQ, to make life simple. Because Eq. 3.36 does not
contain Vw anymore, I do not have to worry about the change in physical volume, brought
about by emptying the buffer (which is taken care of by eR). The production of eggs leads to
a decrease in physical volume. The new physical volume follows from the structural volume
again, and from e and eR (Eq. 2.111), where the latter is reset after spawning (see Eq. 2.46).

3.3.3 Scaled version

For the standard TK model, we used a scaling with PV d to obtain a scaled internal concen-
tration. Here, we should not scale with PWd as this partition coefficient can change over
time. However, we can still scale MQ with PV d. We can take the ODE for MQ of Eq.
3.36, and divide both sides with PV d. I introduce a new symbol for the scaled amount2 as
mQ = MQ/PV d = cWVw:

d

dt
mQ = V k̇e

(
(1 + PEV (e+ eR)ωV )cd −

mQ

V

)
(3.43)

= k̇e (cdV (1 + PEV (e+ eR)ωV )−mQ) (3.44)

We can calculate the scaled amount mQ without knowing the value of PV d. We can also
simply calculate scaled amounts in structure mQV and reserve mQR as above. For the link
with effects, we can calculate a scaled internal concentration as:

cV =
mQV

V
=
MQV

PV dV
(3.45)

The interpretation of this cV is similar to that of the standard TK model. It is the scaled
concentration in structure and not in the whole body. However, the interpretation that
cV∞ = cd is lost; the value of cV∞ now also depends on PEV , ωV and e, eR (the relationship
may thus vary in time).

2I use the symbol m different from the deb book, where it is used as moles of compound relative to C-moles
of structure.
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3.3.4 Constant reproduction

This is a variation of the previous model, accounting for continuous reproduction. Again, for
the elimination rate, either 3.19 or 3.22 can be used, with eR = 0. The total mass of chemical
is given by an additional term to Eq. 3.36:

d

dt
MQ = k̇e (cdV PV d (1 + PEV e ωV )−MQ)− Ṙe0

e
(MQ −MQV ) (3.46)

The last term is the flux of toxicant with reproduction. This equation can again be scaled
with PV d:

d

dt
mQ = k̇e (cdV (1 + PEV e ωV )−mQ)− Ṙe0

e
(mQ −mQV ) (3.47)

3.3.5 Toxicokinetics in eggs

At this moment, there appears to be little known about TK inside the egg. The difference
between the egg and the juvenile/adult lies in the surface area for exchange (a rather constant
egg wall vs. a size-dependent exchange area such as gills or gut surface). It seems likely that
the elimination rate during the egg phase is considerably lower than for the juvenile/adult, but
how much lower is impossible to say without experimental data. For the chemical kinetics, we
can basically use the same equations for the egg as for the juvenile/adult under time-varying
composition. In the egg situation, we really need to account for this change in composition
as the ratio of structure to reserve drastically increases during embryonic development. Of
course, the embryo is not reproducing, so we do not need to account for eR and buffer
dynamics.

The initial amount of chemical in a single egg is:

M0
Q =

∆MQ

∆R
(3.48)

The initial total concentration in the eggs is than obtained from the change in chemical load
and the total weight of the eggs3 (note that V is the structural volume of the mother):

[M0
Q] =

∆MQ

e0ωV V∆R
=

MQ −MQV

(e+ eR)ωV V
(3.49)

Or, in other words, equal to the concentration in the reserves and the reproduction buffer
just before spawning. This also implies that the initial concentration in the structure of the
embryo equals the concentration in the structure of the mother just before spawning (as the
same PEV applies).

3.4 Uptake from food

In case that the kinetics are dominated by uptake through the gut, and if feeding rates vary,
it might make sense to include the scaled functional response as follows:

d

dt
cV = fk̇ref

e

Lm0

L
(cd − cV )− cV ṙ (3.50)

Note that the inclusion of f in this manner does not lead to different ultimate body residues
cV∞; it only affects the rate for chemical exchange with the environment. This is a very

3In the deb book, the symbol [M0
Q] is used for the NEC on unscaled internal concentration.
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simplistic solution to a rather complex problem, but it does not require additional parameters.
Probably a more realistic model for uptake from food is provided in [8].

3.5 Saturating kinetics

In some cases, the uptake flux of a toxicant may not increase proportionally to the external
concentration as the concentration increases. Such saturating uptake may occur when uptake
is through an active process, but also when the dissolved concentration (often unknowingly)
approaches the water solubility. We can accommodate this behaviour as:

d

dt
cV = ke

(
cdK

cd + cdK
cd − cV

)
(3.51)

where cdK is the external dissolved concentration at which the uptake flux is half of the flux
if not saturation would occur.

One problem that occurs in this way is that the actual bioconcentraition factor [MQV ]/cd
is not constant anymore, but becomes a function of cd. This does not invalidate the scaling
used for cV , because that is scaled with a constant PV d, which should now be interpreted
as the maximum bioconcentration factor (thus at very low values of cd). The NEC c0 is
defined against cV (and can be called cV 0), and normally can be interpreted as the external
concentration that does not lead to exceedance of the internal threshold (cd0 = cV 0). However,
this interpretation is not valid anymore in the saturation case. We can still calculate the
external threshold cd0 though, by starting from the steady-state situation where cV is constant,
evaluated exactly at the NEC:

ke
cdK

cd0 + cdK
cd0 = kecV 0 (3.52)

cdKcd0 = cV 0cd0 + cV 0cdK (3.53)

cdKcd0 − cV 0cd0 = cV 0cdK (3.54)

cd0 =
cV 0cdK
cdK − cV 0

(3.55)

cd0 =

(
1

cV 0
− 1

cdK

)−1

(3.56)

From this equation, it can also easily be seen that:

cV 0 =

(
1

cd0
+

1

cdK

)−1

(3.57)

In a similar fashion, we can model a saturating biotransformation rate as an additional elim-
ination mechanism:

d

dt
cV = ke (cd − cV )− k̇m

cV K
cV + cV K

cV (3.58)

where k̇m is the maximum rate constant for metabolic elimination, and cV K is the half-
saturation concentration in structure.
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Chapter 4

Toxicodynamics

4.1 Effects of toxicants on metabolic parameters

For the effects of toxicants, I introduce a stress function as function of the dose metric. If the
dose metric is the scaled internal concentration:

s =
1

cT
max (0, cV − c0) ≡ 1

cT
(cV − c0)+ (4.1)

In this definition, s is a dimensionless indicator of the degree of stress on a deb parameter.
Below the no-effect concentration c0, there is no effect. When the scaled internal concentration
exceeds the NEC, the stress function increases in a linear fashion. Note that cV is a scaled
internal concentration, and therefore has the dimensions of an external concentration. This
implies that c0 and cT also have the dimension of an external concentration. The NEC can
thus be interpreted as the external concentration that does not lead to exceedance of the
internal threshold, even after prolonged exposure.

Instead of the scaled internal concentration cV we can use any dose metric that we like,
including the actual internal concentration MQV , or the damage density [mD]. Choosing
a different dose metric also implies that the threshold and tolerance obtain a different in-
terpretation and different dimensions (e.g., using damage density as metric means that the
threshold and tolerance are also damage densities).

Subsequently, s can be applied to one or more primary deb parameters. Because the deb
formulations I presented earlier includes two compound parameters (g and k̇M ) we have to be
a bit more careful with these ones. The most obvious effect mechanisms are shown in Table
4.1.

4.1.1 Effects on the acquisition of energy

In Table 4.1, I provide several options for effects on the acquisition of energy for the reserves
from food. I think that this covers all of the possible effects on the acquisition, apart perhaps
from an effect on the incorporation of the assimilation flux into the reserves µEA, which would
be hard to distinguish from an effect on the assimilation efficiency µAX .

Note that I did not show an option for a toxicant to decrease {ṗAm}. This is because
this parameter follows from {J̇XAm} (see Eq. 2.10). This latter is considered as primary
parameter here. However, a change in {J̇XAm} or µAX leads to a change in {ṗAm}, which
leads to problems in the scaled deb model, as all reserve amounts and fluxes are scaled with
this parameter. Scaling with a parameter that itself changes in time is asking for problems.
Fortunately, we can see from Eq. 2.10 and 2.7 that we can account for all effects on the
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Mode of action Target parameter deb parameters under stress

Effects on energy acquisition
Decrease assimilation efficiency µAX µAX(1− s)+

Decrease in maximum feeding rate {J̇XAm} {J̇XAm}(1− s)+

Increase in food handling time tp {J̇XAm} 1
1+s

Decrease in food searching or filtering rate {Ḟm} {Ḟm}(1− s)+

Effects on energy use

Increase in somatic maintenance [ṗM ] k̇M (1 + s)

Increase in maturity maintenance k̇J k̇J(1 + s)

Increase in overhead costs for structure [EG] g(1 + s), k̇M/(1 + s)

Increase in overhead costs for maturation d
dtUH κH/(1 + s)

Increase in overhead costs for making an egg κR κR/(1 + s)
Hazard during oogenesis κR κR exp(−s)
Increase in allocation to soma κ κ(1 + s)a, g/(1 + s)a
Decrease in allocation to soma κ κ(1− s)+, g/(1− s)+

Increase in mobilisation from reserve v̇ v̇(1 + s), g(1 + s)
Decrease in mobilisation from reserve v̇ v̇(1− s)+, g(1− s)+

Increase in Weibull ageing k̇W k̇W (1 + s)

Increase in Gompertz ageing k̇G k̇G(1 + s)

Table 4.1: Possible effect mechanisms for the scaled deb model as presented in Section 2.2.
Combinations of these mechanisms is possible. The (1 + s)a means that an upper boundary
for s has to be used, such that κ ≤ 1

acquisition of energy by including them in the scaled functional response f . However, if we
need to build a mass balance for food or nutrients, we have to be careful with the various
options. For example, an effect on assimilation efficiency does not change the removal of food
from the environment, but leads to an increased nutrient content of the faeces. In contrast,
an increase in food handling time leads to a decreased removal of food items.

An effect on assimilation efficiency would be the simplest case, as it would act as a simple
decrease of f (this was the only feeding-related option in the original debtox equations of
[16]):

f → f(1− s)+ (4.2)

For the other options, we have to dive a bit deeper in the feeding module (Section 2.1.1). It
is possible to translate the effects on {J̇XAm} and {Ḟm} to an effect of f . For a decrease in
maximum surface-specific feeding rate only:

f → f

(
f

(1− s)+
+ 1− f

)−1

(4.3)

Note that for f = 1, this equation results in Eq. 4.2 again. For an increase in food handling
time:

f → f (1 + sf)−1 (4.4)

For a decrease in searching or filtering rate:
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f → f

(
f +

1− f
(1− s)+

)−1

(4.5)

In this equation, there is no effect on f at maximum food f = 1. This makes sense as the
organism does not have to search when there is food ad libitum. An effect on the maximum
feeding rate and the maximum searching rate, by the same factor, would again lead to the
basic effect on f as in Eq. 4.2.

Thus, all effects on the feeding and assimilation process can be lumped into an effect on f .
In practice, it will generally be impossible to distinguish between these options without access
to actual feeding rates and/or effects at different food densities. However, the choice of the
mechanism of action can have consequences for the extrapolation to untested food densities,
and for the food dynamics in population models.

4.1.2 Derivation of effects on feeding

Effects on feeding can be thought of as occurring through (at least) four pathways: increase in
handling time, decrease in maximum ingestion rate, decrease in searching rate, or a decrease
in assimilation efficiency from the gut to the reserves. In most ecotoxicological situations, we
do not want to include details of the feeding process, because this requires details about the
feeding biology of the organism, which is generally not observed. Furthermore, this would
require two extra parameters and access to actual food densities. To simulate the consequences
of an effect through each pathway, I would like to include all mechanisms of action as if it
were an effect on f alone.

The feeding rate (in moles per time) is given by:

J̇XA = f{J̇XAm}L2 (4.6)

Which can be rewritten using the definition of f :

J̇XA =
1

1 + {J̇XAm}
X{Ḟm}

{J̇XAm}L2 (4.7)

Assuming a stress on the maximum surface-specific ingestion rate as primary parameter, we
obtain for the feeding rate under stress:

J̇XAs =
1

1 + {J̇XAm}(1−s)
X{Ḟm}

{J̇XAm}(1− s)L2 (4.8)

The ratio between the feeding rate under stress and without stress is the factor that needs to
be applied on f . For notational ease, I will use J for {J̇XAm} and F for {Ḟm} This ratio is
(after a little manipulation):

J̇XAs

J̇XA
=

1 + J
XF

1 + J(1−s)
XF

(1− s) (4.9)

No we can use the definition of f as:

f =
1

1 + J
XF

⇒ J

XF
=

1− f
f

(4.10)

and after some more manipulations:
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J̇XAs

J̇XA
=

1
f

1−s + 1− f
(4.11)

Note that f is here the value under non-stressed conditions. For ad libitum conditions, f = 1,
which implies that the stress function simplifies to 1− s. However, for lower food densities in
the environment, the stress on the feeding rate is somewhat less than that on {J̇XAm}, because
the saturation coefficient also decreases. When we have no interest in actual feeding levels,
we can accommodate this stress on the maximum surface-specific ingestion rate through an
effect on f as follows:

fs = f
1

f
1−s + 1− f

(4.12)

If we want to include an effect on the handling time per food item, this implies that (the
handling time is the inverse of the maximum ingestion rate):

{J̇XAms} = {J̇XAm}
1

1 + s
(4.13)

Through a similar derivation, this effect can be translated into an effect on f as:

fs = f
1

1 + sf
(4.14)

An effect on the maximum surface-specific searching rate {Ḟm} leads to the following effect
on f :

fs = f
1

f + 1−f
1−s

(4.15)

Interestingly, when the food level is ad libitum, there is no effect of the stressor. This makes
sense: when you are swimming in food, you do not have to search for it. However, f reaches 1
asymptotically only, and therefore never truly is 1. Thus, the analysis of the effects becomes
very sensitive to the actual level of f in the test.

The last option is that a stressor reduces the uptake of food from the gut, or the assimi-
lation into the reserves (these two options cannot be distinguished without energetic analysis
of the faeces). This leads to the ‘standard’ debtox relationship:

fs = f(1− s) (4.16)

4.1.3 Effects on use of reserve

In Table 4.1, I provide several options for effects on the use of energy from the reserves. I
think that this covers the most of the possible effects on the use of reserves. This list is far
greater than the original four mechanisms for the use of energy in debtox.

A peculiar effect is perhaps on the costs for maturation. Maturation is quantified by the
amount of reserves invested in it, so there is no concept of overhead costs in most of the deb
publications. However, if a toxicant can change this overhead, there needs to be a parameter.
Therefore, I suggest to introduce the parameter κH , which is added in Eq. 2.42 (in the control,
κH = 1).

An effect on mobilisation v̇ does not seem particularly likely, and was not considered in
the original debtox formulation. However, in principle it is possible that this parameter is
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affected by toxicants. A decrease in v̇ leads to an increase in maximum reserve density [Em],
as long as {ṗAm} remains constant. Therefore, g will increase (see Eq. 2.28). A decrease in v̇
and g by the same factor means that maximum structural body size is not affected. However,
because [Em] is increased, the ultimate physical volume will be increased. Even though there
is no effect on ultimate structural size, there is an effect on the growth rate, comparable to an
increase in the growth costs. This effect is caused by a less intuitive change in mobilisation
flux SC , because the effect of the growth dilution factor for reserve works out slightly different
(see Eq. 2.33). An increase in v̇ will lead to a short-lived increase in SC , which is followed by
a decrease in [Em].

4.1.4 Effects on mortality

Effects on mortality are modelled somewhat independently from effects on the energy budget.
In principle, the same scaled internal concentrations should be used, but survival has its own
threshold for effects and its own proportionality:

ḣQ = ḃ†max (0, cV − c0†) ≡ ḃ† (cV − c0†)+ (4.17)

Similarly as explained for sub-lethal effects, we can use any dose metric for survival, which
has consequences for the interpretation and dimensions of the NEC and the killing rate.

The hazard rate due to toxicant exposure (ḣQ) can simply be added to other hazard rates,
assuming that they are independent effects. Some deaths are accidental, and can be included
by a (low) constant background hazard rate (ḣ0). For short laboratory experiments, this is
usually sufficient. For full life-cycle situation, we probably want to use an ageing module of
Section 4.2, which yields ḣD. The total hazard is thus:

ḣ = ḣQ + ḣ0 + ḣD (4.18)

For one particular data analysis [4], I decided to use a Weibull function for ḣ0 to ac-
commodate the increase in background hazard as the organisms died from starvation in the
experiment. This is pragmatic if the interest is in effects of a toxicant only, but starvation does
much more than increase the hazard rate (and might interact with the toxicity parameters).
It would be more scientific (but also much more complicated) to deal with such starvation in
an energy budget context.

4.1.5 Modes of action for the DEBtox simplification

For the simplified model, we are severely limited in the number of mechanisms that we can
invoke (Table 4.2). The reason is that we have to insure that the length at puberty remains
constant. In Table 4.2, I only showed one mechanism for the acquisition of energy. Even
though all of the mechanisms in Table 4.1 can be used, they can hardly be distinguished in
the standard tests that the simplified model was meant for.

4.1.6 Mixture toxicity

The general deb approach for mixtures was presented in [12]. In the ‘same target’ model, we
can sum op the (scaled) internal concentration (or damage levels), with a weight factor (W).
When using scaled internal concentrations, this weight factor can represent differences in the
bioconcentration factor of the various components in the mixture. Further, these factors may
represent differences in efficiency with which the components interact with the target site.



46 Toxicodynamics

Mode of action Target parameter deb parameters under stress

Effects on energy acquisition
Decrease in assimilation from food {ṗAm} f(1− s)+

Effects on energy use

Increase in maintenance costs [ṗM ], k̇J k̇M (1 + s), Ṙm(1 + s)

Increase in costs for structure and maturation [EG], ddtUH g(1 + s), k̇M/(1 + s)

Increase in overhead costs for making an egg κR Ṙm/(1 + s)

Hazard during oogenesis κR Ṙm exp(−s)

Table 4.2: Possible physiological modes of action for the simplified debtox model as presented
in Section 2.4

When departing from scaled body residues, the total concentration of the components a, b,
etc. is:

ca+
V = caV +Wb c

b
V +Wc c

c
V + . . . (4.19)

In this case, the total concentration ca+
V is referenced to chemical a. In other words, the other

components are weighted as if they were diluted or concentrated forms of a. The total stress
factor and the total hazard coefficient are than calculated as:

s =
1

caT
(ca+
V − c

a
0)+ (4.20)

hQ = ḃa†(c
a+
V − c

a
0†)+ (4.21)

In the ‘different target’ model, we calculate a stress factor for each component individually as
sa, sb etc. and apply them all to a target deb parameter. If two compounds affect the same
parameter, the stress factors are multiplied as follows for the example of an effect on k̇M :

k̇M = k̇M0(1 + sa)(1 + sb) . . . (4.22)

For effects on the hazard rate, we can sum the independent hazard rates for the individual
components:

hQ = haQ + hbQ + . . . (4.23)

For mixture that are made up of a combination of chemicals that effect the same and different
targets, we can first make a (weighted) sum of the components that affect the same target,
and than combine the summed concentrations in the different target model.

4.2 Ageing or senescence

4.2.1 Derivation DEB book

The standard ageing module in deb consists of a system of two odes. Starting from an
equation for damage-inducing (MQ, changed genes, affected mitochondria) and damage com-
pounds (MD, ‘wrong proteins’), this system can be rewritten to equations for ‘acceleration’
q̈ and ‘hazard’ ḣD. In this section, I will work out the derivation in detail, starting with the
equations from [15]:
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d

dt
MQ = ηQC ṗC +

1

EsG
ṗCMQ (4.24)

d

dt
MD = k̇W yDQMQ (4.25)

The parameter EsG is a constant with the dimensions of energy. To remove the energy
dimension we can scale with a constant property of the organism that also has an energy
dimension. Thus we can scale with the maximum absolute reserve level in the control:

1

EsG
=

sG
[Em0]L3

m0

(4.26)

We can now translate the amount of damage-inducing compounds and damage compounds
to densities, note that m∗ = M∗/MV :

d

dt
mQ = ηQC

ṗC
MV

+
sG

[Em0]L3
m0

ṗCmQ − ṙmQ (4.27)

d

dt
mD = k̇W yDQmQ − ṙmD (4.28)

The hazard rate is proportional to the damage density mD. The reference density mref
D is

introduced to allow the interpretation of the proportionality ḣa as a hazard rate (although
this is not essential for the final equations).

ḣ =
ḣa
mref
D

mD (4.29)

We can now free mD from this equation, and use it to rewrite Eq. 4.28:

mref
D

ḣa

d

dt
ḣ = k̇W yDQmQ − ṙ

ḣmref
D

ḣa
(4.30)

d

dt
ḣ =

ḣa
mref
D

k̇W yDQmQ − ṙḣ (4.31)

The entire part before mQ is constant. To simplify the notation, we can introduce a new
state variable:

q̈ =
ḣa
mref
D

k̇W yDQmQ (4.32)

This simplifies the equation for the hazard rate to:

d

dt
ḣ = q̈ − ṙḣ (4.33)

Next, we also have to rewrite the ode for mQ to a corresponding change in q̈:

mref
D

ḣak̇W yDQ

d

dt
q̈ = ηQC

ṗC
MV

+
sG

[Em0]L3
m0

ṗC q̈
mref
D

ḣak̇W yDQ
− ṙq̈

mref
D

ḣak̇W yDQ
(4.34)

d

dt
q̈ =

ḣak̇W yDQ
mref
D

ηQC
ṗC
MV

+
sG

[Em0]L3
m0

ṗC q̈ − ṙq̈ (4.35)
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Next step is to include the equation for the mobilisation ṗC :

ṗC = E

(
v̇

L
− ṙ
)

= e[Em]L3

(
v̇

L
− ṙ
)

(4.36)

which gives (in the second equation, note that MV = [MV ]L3):

d

dt
q̈ =

(
ḣak̇W yDQ
mref
D

ηQC
MV

+
sG

[Em0]L3
m0

q̈

)
e[Em]L3

(
v̇

L
− ṙ
)
− ṙq̈ (4.37)

=

(
ḣak̇W yDQ
mref
D

ηQC
[MV ]

[Em] + sG
[Em]L3

[Em0]L3
m0

q̈

)
e

(
v̇

L
− ṙ
)
− ṙq̈ (4.38)

As long as [Em] is not affected by a toxicant, the first term between brackets is constant (here,
ḧa is used as a new compound parameter), and [Em] = [Em0]. Therefore, we can simplify the
equation to:

d

dt
q̈ =

(
ḧa + sG

L3

L3
m0

q̈

)
e

(
v̇

L
− ṙ
)
− ṙq̈ (4.39)

In which cases is [Em] not constant? When either ṗAm or v̇ change. In the scaled deb model,
I include all changes in ṗAm as a change in f . Therefore, [Em] will also be constant in that
way. However, a change in v̇ is more tricky. A decrease in v̇ implies an increase in [Em]. This
means that the ageing constants ḧa and sG will also increase by the same factor, if we are to
use Eq. 4.39.

4.2.2 Derivation for scaled model

The original derivation of the ageing model in the deb book has a few problems in a chemical-
stress context. Firstly, it depends on the constancy of [Em] (which changes when v̇ changes),
and it depends on the equation for the mobilisation flux ṗC (which changes under some of the
starvation regimes). Therefore, I have derived a new formulation, which is mathematically
equivalent, but includes the scaled mobilisation explicitly as used in the scaled deb model. I
start again, without specifying the proportionality constants (I just call them a1-a3 to simplify
notation):

d

dt
MQ = a1ṗC + a2ṗCMQ (4.40)

d

dt
MD = a3MQ (4.41)

Next, I can change the equation for MQ and MD to amounts per structural volume by dividing
by L3:

d

dt
[MQ] =

a1

L3
ṗC + a2ṗC [MQ]− ṙ[MQ] (4.42)

d

dt
[MD] = a3[MQ]− ṙ[MD] (4.43)

I assume that the hazard rate is proportional to the amount of damage per structural volume
(instead of per C-mole of structure as in the original):
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ḣD = ḃD[MD] (4.44)

The set of equations now has four parameters: a1, a2, a3, ḃD. However, these parameters
can not be independently estimated. I do not see an easy scaling for this set of equations, as
was done for the internal concentration. Therefore, I follow the same route as in the original
deb3 derivation and rewrite the equations for [MQ] and [MD] using:

[MD] =
ḣD

ḃD
(4.45)

Note that I use a subscript D for ‘damage’ for the hazard rate. In the deb book, this hazard
rate has no subscript. Because I have to deal with multiple causes of death (due to chemicals
in the environment, and accidental deaths in the laboratory) I feel it is better to make this
one of all possible hazard rates. The symbol ḣ without subscript is than reserved for the
overall hazard rate.

Rewriting the equation for [MD] to:

d

dt
ḣD = a3ḃD[MQ]− ṙḣD (4.46)

Next we can call the first term in this equation q̈, so that:

q̈ = a3ḃD[MQ] and thus [MQ] =
q̈

a3ḃD
(4.47)

which we can use to rewrite the equation for [MQ]:

d

dt
q̈ = a1a3ḃD

ṗC
L3

+ a2ṗC q̈ − ṙq̈ (4.48)

The scaled mobilisation flux SC equals ṗC/{ṗAm}, and thus we can rewrite the equation to:

d

dt
q̈ =

(
{ṗAm}a1a3ḃD

1

L3
+ {ṗAm}a2q̈

)
SC − ṙq̈ (4.49)

The string of variables {ṗAm}a1a3ḃD is a constant1 with the dimensions L/t3; the combination
{ṗAm}a2 has dimensions 1/(L2t). These are not such practical dimensions; I would prefer
rate constants with dimensions 1/t. To achieve that, I can introduce a length measure that
is constant into the equation: the maximum length under control conditions. Furthermore,
I add a power of 3 to the first rate constant to provide the dimension of cubed time. This
leads to:

d

dt
q̈ =

(
k̇3
W

Lm0

L3
+ k̇G

q̈

L2
m0

)
SC − ṙq̈ (4.50)

d

dt
ḣD = q̈ − ṙḣD (4.51)

Now we have two rate constants as parameters. Note that I use the symbol k̇W here for a
different parameter than in the original derivation. The reason is that I like the subscript W
for ‘Weibull’, and G for ‘Gompertz’.

1I can do this because I take all of the effects on {ṗAm} as effects on the scaled functional response f to
preserve the scaling in the scaled deb version.
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4.2.3 Relationship between the sets of ageing parameters

The two formulations are mathematically identical, at least in the absence of stress on v̇.
Therefore, we can transform the old parameters in the new ones. For the two expressions for
d
dt q̈ to be identical the following must hold:(

k̇3
W

Lm0

L3
+ k̇G

q̈

L2
m0

)
SC =

(
ḧa + sG

L3

L3
m0

q̈

)
e

(
v̇

L
− ṙ
)

(4.52)

Using Eq. 4.36, and as ṗC = SC{ṗAm}, we can rewrite this equation to:

(
k̇3
W

Lm0

L3
+ k̇G

q̈

L2
m0

)
SC =

(
ḧa + sG

L3

L3
m0

q̈

)
SC
{ṗAm}
[Em]L3

(4.53)(
k̇3
W

Lm0

L3
+ k̇G

q̈

L2
m0

)
SC =

(
ḧa
Lm0

L3
+ sG

q̈

L2
m0

)
SC
{ṗAm}

[Em]Lmo
(4.54)

Clearly, the important difference between the parameter sets lies in one parameter combina-
tion:

{ṗAm}
[Em]Lmo

=
v̇

Lmo
(4.55)

Maximum length in the control is given by:

Lmo =
v̇0

k̇M0g0

(4.56)

and the factor is therefore given by:

k̇3
W = ḧa

v̇

v̇0
k̇M0g0 (4.57)

k̇G = sG
v̇

v̇0
k̇M0g0 (4.58)

Without stress on v̇, this a straightforward transformation. However, when v̇ is affected,
this leads to a an increase in [Em], and thereby an increase in ḧa and sG. The factor v̇/v̇0

compensates for this effect; the new parameters k̇W and k̇G remain constant under a change
in v̇.

4.2.4 Alternative ageing model

The deb3 ageing module as presented in the previous sections has some problems for me.
Mainly, for invertebrates such as nematodes and springtails (and probably many others) the
shape of the survival curves is such that the ageing model does not predict increased longevity
at food limitation. This is unacceptable behaviour, as food limitation seems quite consistently
to increase longevity in animals.

An alternative I would like to explore further departs from the same situation as the stan-
dard model, but links the hazard rate to the damage-inducing compounds directly (without
additional damage compounds). Furthermore, I take the absolute amount of damage-inducing
compounds, and not their density. This is partly for pragmatic reasons: dividing by the body
volume kills much of the life-extending effect of food limitation due to the counteracting ef-
fect of growth dilution. However, it might not be such a stretch to take the absolute amount
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of damage, as it appears that damaged mitochondria are not diluted by growth, but are
replicated [20]. The starting equations are now:

d

dt
MQ = a1ṗC + a2ṗCMQ (4.59)

ḣD = a3MQ (4.60)

We can rewrite these two equations into a single ode for ḣD by using MQ = hD/a3:

1

a3

d

dt
ḣD = a1ṗC + a2ṗC

ḣD
a3

(4.61)

d

dt
ḣD = ṗC

(
a1a3 + a2ḣD

)
(4.62)

As ṗC = {ṗAm}SC , we obtain:

d

dt
ḣD = {ṗAm}SC

(
a1a3 + a2ḣD

)
(4.63)

= SC

(
{ṗAm}a1a3 + {ṗAm}a2ḣD

)
(4.64)

The terms {ṗAm}a1a3 and {ṗAm}a2 are constants, but they have a bit unpleasant dimensions
(1/(t2L2) and 1/(tL2)). We can, however, turn them into two rate constants with dimensions
1/t by using another constant; the maximum length in the control (Lm0):

k̇W =
√
{ṗAm}a1a3L2

m0 (4.65)

k̇G = {ṗAm}a2L
2
m0 (4.66)

And the ageing equation is now written as:

d

dt
ḣD =

SC
L2
m0

(
k̇2
W + k̇GḣD

)
(4.67)

4.2.5 Slight variation

One of the things that I don’t like about the ageing models in this form is that the hazard
rate (ḣD) is the only resulting state variable. To include an ageing effect on reproduction, we
would have to include a stress relative to the hazard rate, which is awkward. Fortunately, it
is straightforward to rearrange the same simple model.

d

dt
MQ = a1ṗC + a2ṗCMQ (4.68)

Next, we can scale MQ using a1/a2, which implies mQ = MQa2/a1. This leads to the equation
for scaled (dimensionless) damage:

d

dt
mQ = a2ṗC + a2ṗCmQ (4.69)

= a2ṗC(1 +mQ) (4.70)

= a2{ṗAm}SC(1 +mQ) (4.71)



52 Toxicodynamics

We can introduce k̇G = a2{ṗAm}L2
m0:

d

dt
mQ = k̇G

SC
L2
m0

(1 +mQ) (4.72)

Scaled damage can be related to the hazard rate by:

ḣD = k̇WmQ (4.73)

Note that k̇W is not exactly the same as in the previous derivation (in fact this k̇W equals
the previous one squared and divided by k̇G)! Advantage of this parameterisation is that it
is now easy to include a threshold for scaled damage, and to include effects in reproduction.

4.2.6 Ageing effects on reproduction

Ageing also affects reproduction rates. One option is to decrease the efficiency for the pro-
duction of eggs from the reproduction buffer (a decrease of κR) [7]. However, it is generally
observed that old animals feed less. We could depart from the starvation strategies outlined
earlier.

4.2.7 Ageing related to respiration

In the previous sections, ageing was related to the mobilisation of reserves (through ṗC or
SC). However, part of these mobilised reserves are used as building materials for structure
and offspring. It is possible that these do not lead to production of ros and the associated
damage. The full deb model provides direct access to the individual fluxes that lead to
respiration: somatic and maturity maintenance, maturity, and the overheads of growth and
reproduction (ignoring respiration related to assimilation):

ṗD =

{
ṗM + (1− κ)ṗC + (1− κG)ṗG if EH < EpH
ṗM + ṗpJ + (1− κR)ṗR + (1− κG)ṗG otherwise

(4.74)

For the scaled model, we have to do a bit more work to calculate the scaled total dissipation.
The scaled somatic maintenance power is given by (note that Lm is not in the control!):

SM =
[ṗM ]

{ṗAm}
L3 = κ

L3

Lm
(4.75)

This recalculation makes use of the definitions of Lm, v̇, g and k̇m. The scaled growth power
is thus:

SG = κSC − κ
L3

Lm
(4.76)

The scaled maturity plus maturity maintenance power in juveniles:

SJ + SH = (1− κ)SC (4.77)

Maturity maintenance in adults:

SJ = k̇JU
p
H (4.78)

And the scaled power for reproduction:

SR = (1− κ)SC − k̇JUpH (4.79)
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This leaves as unknown parameter the fraction of growth energy fixed in new structure:

κG = µV
[MV ]

[EG]
(4.80)

Using the default add my pet values for these parameters yields a κG of 0.73.
At this moment, I have not compared all these different ageing models so more work is

needed here. An interesting result of this model would be that because relative respiration
decreases after puberty, so does the rate of ageing (although this can be partly counteracted
by the ageing acceleration).

4.3 Damage models and receptor kinetics

4.3.1 Damage kinetics

In the papers that use it, the concept of damage is kept quite vague. Here, I assume that
damage is diluted by growth (just as assumed for damage due to ros in the ageing module),
and that actual internal concentration [MQ] is available:

d

dt
[MD] = k̇DyDQ[MQ]− k̇r[MD]− ṙ[MD] (4.81)

where k̇D is the rate constant for damage ‘accural’, yDQ the yield of damage on internal
chemical concentration, and k̇r is the damage repair rate. Note that the dilution factor enters
in the same way as for internal concentrations (with ṙ as the specific growth rate). This
equation has at least two parameters, which cannot both be identified from the data (as
damage cannot be measured). This situation is completely equivalent to the problem that we
cannot identify two TK rate constant from toxicity data alone. The solution is the same: scale
with the partition coefficient. Next, I can introduce a partition coefficient between damage
density and internal concentration:

PDQ =
k̇DyDQ

k̇r
(4.82)

Now we can divide both sides of the equation for [MD] with PDQ to obtain a scaled damage
density ([mD] = [MD]/PDQ with the dimensions of an internal concentration):

d

dt
[mD] = k̇r ([MQ]− [mD])− ṙ[mD] (4.83)

See also the explanation in [5].

4.3.2 Receptor kinetics

The receptor model as presented by [10] follows from the assumption that the internal con-
centration knocks out functional receptors (Nf ), and makes them non-functional (Nn). Here,
I assume that non-functional receptors are diluted by growth, and thus that the total number
of receptors per unit of structural volume is constant (which is by no means certain). Fur-
thermore, I assume that the actual internal concentration [MQ] is available. It is possible to
substitute the scaled concentration cV , but it will be difficult to estimate all parameters from
toxicity data alone. The equation for the number of non-functional receptors is:

d

dt
Nn = ḃfn[MQ]Nf − k̇rNn (4.84)
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where ḃfn is the receptor ‘knock-out’ rate and k̇r is the repair rate. The total amount of
receptors is limited, and here I assume that they are a fixed fraction of the structural body
volume:

N+ = Nf +Nn = [N+]V (4.85)

We can use this relation to rewrite the equation:

d

dt
Nn = ḃfn[MQ] ([N+]V −Nn)− k̇rNn (4.86)

Next, we can rewrite this equation to the fraction of non-functional receptors nn = Nn/N+:

d

dt
nn = ḃfn[MQ](1− nn)− k̇rnn − ṙnn (4.87)

The dilution factor ṙ enters in the same manner as for the internal concentration.
If nn remains much small than 1, this equation reduces to the scaled damage model (if we

scale the receptor equation by a partition coefficient equal to ḃfn/k̇r).



Chapter 5

Fitting models to data

5.1 Initial values for the energy-budget parameters

Fitting more than two or three parameters to a data set requires good starting values. Most
of the deb model parameters are rather abstract, and cannot be directly observed. Further-
more, there are plenty of parameter combinations that do not produce a working life cycle.
Therefore, it is good to start with parameter values that are already somewhat close, and
work from there.

It is possible to start with the body-size-specific parameter values as offered in the deb
book in 5.1. They might work for your species, but care must be taken. Especially, k̇M seems
very low to me, and perhaps better to start with k = 1. Table 5.3 gives some representative
values for several invertebrates that I have worked with. I do not claim that these are
appropriate or accurate; they might serve as a starting point for your analyses.

5.2 Likelihood functions

5.2.1 Continuous endpoints (body size and reproduction)

Here, we will go into a bit more detail about normal likelihood functions, and especially on
treating the standard deviation of the error distribution as a nuisance parameter, and working
with the means of replicate observations. See also the supporting information of [13].

Observations are represented as Yijr, where i is the time point of the observation (from 1
to k), j the concentration (or the treatment, from 1 to m), and r the replicates (the number
of individual organisms on which there are observations at that time and concentration, from
1 to n). The number of observation times may depend on the treatment (and thus kj),
and the number of replicates may depend on both time and treatment (and thus nij). The
observed value is compared to the predicted value Ŷij from the model, which depends on the
parameter set θ. Our reference situation is the log-likelihood function where the deviations
from the model predictions Ŷ are normal, independent and homoscedastic:

`(θ, σ2|Y ) = −N
2

ln(2πσ2)− 1

2σ2

m∑
j=1

kj∑
i=1

nij∑
r=1

(Yijr − Ŷij(θ))2 (5.1)

where N is the total number of data points:
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Parameter Symbol Initial value

Specific searching rate {Ḟm} 6.5 L cm−2 d−1

Maximum specific ingestion rate (C-moles) {J̇XAm} 51·10−6 zmol cm−2 d−1

Maximum specific ingestion rate (volume) {J̇XAm}/[MV ] 0.013 z cm3 cm−2 d−1

Fraction of mobilisation to soma κ 0.8 [-]
Reproduction efficiency κR 0.95 [-]
Energy conductance v̇ 0.02 cm d−1

Energy investment ratio g 3.1 z−1

Somatic maintenance rate coefficient k̇M 0.0064 d−1

Maintenance ratio k 0.31 [-] or 1 [-]
Scaled maturity at puberty UpH 7.4 z2 cm2 d

Maturity ratio ubpH 0.0017 [-]

Weibull ageing rate k̇W 0.0027 z2/3 d−1

Gompertz ageing rate k̇G 2 ·10−4 z d−1

Table 5.1: Initial values for parameters at 20 ◦C. The zoom factor is defined as Lm = zLref
m

and Lref
m = 1 cm (note that this is structural length). All values recalculated from deb book

... Ageing parameters recalculated from “add my pet”. The conversion of feeding rate from
C-moles to volume was made on the assumption that the number of C-moles per volume is
the same for the food as for the feeding animal ([MV ] = 4.1 mmol/cm3)...

Parameter Symbol Initial value

Contribution of reserves to volume ωV
{ṗAm}
v̇ 2.8 · 10−4 = 0.32 z [-]

Contribution of reserves to wet weight ωw
{ṗAm}
v̇ 2.8 · 10−4 = 0.32 z [-]

Contribution of reserves to dry weight ωd
{ṗAm}
v̇ 5.2 · 10−4 = 0.59 z [-]

Density of structure (wet weight) dV 1 g cm−3

Density of structure (dry weight) dV d 0.1 g cm−3

Table 5.2: Default values for the translation of structure and reserve to actual volume or
weight. Derived from the ‘add my pet’ project; the zoom factor is the same as in Table 5.1.

Parameter D. magna D. octaedra C. teleta

κ 0.80 0.92 0.82

v̇ 3.2 mm d−1 1.3 mg1/3 d−1 1.68 mm d−1

g 0.42 1 2.4

k̇M 1.7 d−1 0.18 d−1 0.25 d−1

k 1 1 1

UpH 0.37 mm2 d 8.1 mg2/3 d 1.39 mm2 d

ubpH 0.033 0.016 0.00087

Table 5.3: Initial parameters values for some invertebrates. Daphnia magna parameters at
20 ◦C from [19]; length measure is probably from eye to base of spine. Dendrobaena octaedra
parameters at 15 ◦C from [9]; length measure is cubic root of wet weight. Capitella capitata
parameters at 20 ◦C from [11]; length measure is cubic root of estimated volume.
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N =
m∑
j=1

kj∑
i=1

nij (5.2)

5.2.2 Transformation

Using untransformed data and model represents the situation where we can assume indepen-
dent normal distributions for the residuals, with a constant variation. Alternatively we can
transform the model and data using square-root or log-transformation:

SSQ(θ;Y ) =
m∑
j=1

kj∑
i=1

nij∑
r=1

(
Ŷ

1/2
ij (θ)− Y 1/2

ijr

)2
(5.3)

SSQ(θ;Y ) =
m∑
j=1

kj∑
i=1

nij∑
r=1

(
ln(Ŷij(θ))− ln(Yijr)

)2
(5.4)

The log-tranformation implies log-normal distributions for the residuals with a variation that
increases with the predicted value for the endpoint. The square root transformation assumes a
squared normal distribution with a variation that also increases with the predicted value, but
less extreme than the log-transformation. At this moment, I prefer the square-root version.

5.2.3 Standard deviation known

If the standard deviation of the scatter is known, the first term in Eq. 5.1 becomes trivial
(it does not depend on the parameters, so it is a constant). The log-likelihood function thus
reduces to:

`(θ|Y, σ2) = − 1

2σ2

m∑
j=1

kj∑
i=1

nij∑
r=1

(Yijr − Ŷij(θ))2 + C (5.5)

To include heteroscedasticity in the analysis, we can also take different error variances for
each time and concentration:

`(θ|Y, σ2) = −
m∑
j=1

kj∑
i=1

1

2σ2
ij

nij∑
r=1

(Yijr − Ŷij(θ))2 + C (5.6)

We can easily work with means (Ȳij)instead of individual data points (Yijr), as long as the
correct error variance is used. Note that:

σ2
Ȳij

=
σ2

nij
(5.7)

And thus if σ2 is known and constant:

`(θ|Y, σ2) = − 1

2σ2
wSSQn(θ;Y ) + C (5.8)

wSSQn(θ;Y ) =

m∑
j=1

kj∑
i=1

nij(Ȳij − Ŷij(θ))2 (5.9)



58 Fitting models to data

The SSQ is thus replaced by the weighted sum-of-squares; each residual is weighted with the
number of replicates for each mean. If the variance of the error is known, no information is
lost when we work with the means instead of the individual replicates.

5.2.4 Standard deviation as a nuisance parameter

Usually, we do not know the value of the residual variation σ2, and we are not interested in, so
we can replace it with its maximum-likelihood estimate. The maximum-likelihood estimate
for the variance σ2 at each θ is the SSQ divided by the number of observations N :

σ̂2(θ, Y ) =
1

N

m∑
j=1

kj∑
i=1

nij∑
r=1

(Yijr − Ŷij(θ))2 (5.10)

In fact, replacing σ2 with its maximum likelihood estimate leads to a profile likelihood where
σ2 is ‘profiled out’ as a nuisance parameter:

`(θ|Y ) = max
σ2

`(θ, σ2|Y ) (5.11)

This profile likelihood can be treated like a normal likelihood in all respects [22]. The log-
likelihood simplifies to:

`(θ|Y ) = −N
2

ln

 m∑
j=1

kj∑
i=1

nij∑
r=1

(Yijr − Ŷij(θ))2

+ C (5.12)

All constant terms (that do not depend on the parameters) are absorbed in C, including the
factor ln2π/N , and can subsequently be ignored.

In practice, we might have to work with the mean observed values at each timepoint and
concentration Ȳij . This requires some consideration because the simplification rests on the
estimation of σ2 from the data (see Eq. 5.10), and the number of replicates on which the
mean is based might differ between the observation times or the tested concentrations. We can
make use of the relationship between the standard error of the mean (the expected deviation
between the average of a number of replicates and the true mean) and the standard deviation
of a number of replicates (the expected deviation between individual replicate and the true
mean). Consider a set of replicate observations for one timepoint i and one treatment j:

σ2
Ȳij

=
σ2

nij
(5.13)

E
(

(Ȳij − Ŷij(θ))2
)

=
1

nij
E
(

(Yijr − Ŷij(θ))2
)

(5.14)

We can estimate the expected squared deviations (Yijr − Ŷij)2 with the standard deviation:

E
(

(Yijr − Ŷij(θ))2
)
≈ 1

nij

( nij∑
r=1

(Yijr − Ŷij(θ))2

)
(5.15)

Combining Eq. 5.14 and 5.15, we can therefore estimate the sum-of-squares over the replicate
observations by the following:

nij∑
r=1

(Yijr − Ŷij(θ))2 ≈ n2
ij(Ȳij − Ŷij(θ))2 (5.16)
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Even though these expressions are not necessarily equal, their expectations are the same. We
can thus estimate the error variance from the data using the n2-weighted sum-of-squares (see
Eq. 5.10):

σ̂2(θ, Y ) =
1

N
wSSQn2(θ;Y ) (5.17)

wSSQn2(θ;Y ) =
m∑
j=1

kj∑
i=1

n2
ij(Ȳij − Ŷij(θ))2 (5.18)

Now, we have to go back to the full log-likelihood of Eq. 5.1, and fill in Eq. 5.17 and 5.9:

`(θ, |Y ) = −NY

2
ln

(
2π

N
wSSQn2(θ;Y )

)
− N

2wSSQn2(θ;Y )
wSSQn(θ;Y ) (5.19)

Where NY is the total number of means (whereas N is the total number of observations on
individuals):

NY =

m∑
j=1

kj∑
i=1

1 (5.20)

We can further simplify the log-likelihood function by including all constant terms (that do
not depend on the parameters) into a constant C:

`(θ|Y ) = −NY

2
ln(wSSQn2(θ;Y ))− NwSSQn(θ;Y )

2 wSSQn2(θ;Y )
+ C (5.21)

In contrast to the likelihood with fixed error variance, in this case, information is lost when
using the means instead of the replicate observations. The reason is that the individual data
points allow for a better estimation of the variance. Note that when the number of replicates
per mean (nij) is constant, the second term of the equation is constant and can be absorbed
into the constant C. In other words, if the means result from the same number of observations,
we can treat them as individual observations.

5.2.5 Multinomial distribution for mortality

For survival, the likelihood function follows from the multinomial distribution. The log-
likelihood of the parameter set θ, given the data set Y , is given by (see e.g., [2, 5]).

`(θ|Y ) =
m∑
j=1

k∑
i=1

(Yij − Yi+1j)ln(Sij(θ)− Si+1j(θ)) + C (5.22)

In this equation, Yij is the number of surviving organisms at observation time i at concentra-
tion j. Similarly, Sij is the survival probability at that point. Note that the subscript i + 1
in this equation means that we have to deal with the situation where i = k + 1. This is an
additional interval which catches the organisms that survive until the end of the experiment
(they are expected to die in the interval from the end of the experiment to infinity). Therefore
we can specify:

Yk+1j = 0 andSk+1j = 0 (5.23)
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For this likelihood function, the fact the follow the same group of animals over time is not a
problem because we only use one observation for each individual (in which interval it dies).
Precondition is that the death of one individual in a container does not affect the death
probability of the others.

In some cases, we can have the situation that organisms are removed from the survival
test for destructive analysis (e.g., measurement of body residues), or that have escaped from
the test container. We can still use the observations from these organisms for our likelihood,
as they still contain information (they were alive up to the point where they were removed
for analysis or lost). We can still use Eq. 5.22 for the individuals that have actually died, but
add to it another log-likelihood function for the ones that were removed or lost (Z):

`(θ|Z) =

m∑
j=1

k∑
i=1

Zij lnSij(θ) + C (5.24)

5.2.6 SSQs for reproduction

It is possible to compare the number of offspring produced by an individual mother in an
interval between t− 1 and t, Yijr, to the integrated reproduction rate over that interval:

SSQ(θ;Y ) =
m∑
j=1

kj∑
i=2

nij∑
r=1

(∫ ti

ti−1

Rj(τ, θ)dτ − Yijr

)2

(5.25)

Often, we have observations for the number of offspring produced by a group of mothers in
an interval, Yij . We can derive a weighted SSQ by calculating an average reproduction per
female, using the average number of mothers alive in that interval, and again compare it to
the integrated reproduction rate over that interval. We also have to weigh the residuals with
the average number of mother over the interval:

wSSQn(θ;Y ) =
m∑
j=1

kj∑
i=2

(
nij + ni−1j

2

)(∫ ti

ti−1

Rj(τ, θ)dτ −
2 Yij

nij + ni−1j

)2

(5.26)

The n2-weighted SSQ can be derived by scaling with the average number of mothers squared.

5.3 Optimisation and confidence intervals

5.3.1 Likelihood optimisation and confidence intervals

In many cases, we have data for more than one endpoint, or more data sets for the same
endpoint. These data sets should not be treated in isolation as they contain information
about the same parameters. The likelihood framework allows to combined the individual
likelihoods. The overall log likelihood for the parameter set θ, based on all available data Y+,
for all individual data sets s, is the sum of the individual log likelihoods for each data set:

`(θ|Y+) =
∑
s

`(θ|Ys) (5.27)

Thereby, I assume that each data set can be treated as an independent source of information
on the parameter value. The log-likelihood function can be maximised to find the best-fitting
parameter set θ̂:
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`(θ̂|Y+) = max
θ
`(θ|Y+) (5.28)

To compare two fits with a different set of parameters, we can use the likelihood-ratio
principle. The two models we compare should be nested; that is, one model is a reduced
version of the other (reduced by fixing one or more parameters to a certain value). The
ratio of two likelihoods (and thus the difference in two log likelihoods) from nested models
can simply be recalculated into a criterion that follows (for ‘large’ numbers of observation)
a chi-square distribution with as degrees of freedom the number of parameters in which the
two models differ.

One application of this principle is to see whether the addition of a certain parameter
significantly improves the model fit. For example, whether adding a damage model improves
the fit. The standard model is a reduced version of the model with damage; the standard
model can be obtained by taking the damage repair rate infinitely large.

Another application of the likelihood ratio principle is in the construction of confidence
intervals (see [21, 22]. We can define the confidence interval of a parameter as all of the
values that will not be rejected in a likelihood-ratio test. This is called the profile likelihood.
Lets take the example of making a profile likelihood for a parameter η. We now consider the
parameter set θ, and a reduced parameter set that does not include η, which I will call θ1.
The profile log-likelihood of the parameter η is:

`p(η|Y+) = max
θ1

`(θ|Y+) (5.29)

Plotting this profile log-likelihood provides insight into the effect of the parameter η on the
likelihood. We can see how the fit deteriorates when the parameter η is forced to a value
different from the best one.

We can use this information to construct a confidence interval, using the likelihood-ratio
principle. Minus 2 times the log of the ratio of two likelihoods follows approximately a chi-
square distribution with v degrees of freedom. The degrees of freedom is the difference in the
number of parameters that were estimated (so the difference between θ1 and θ), in our case
one (when η is a single parameter). The confidence level of a value of η follows from:

− 2
(
`p(η|Y+)− `(θ̂|Y+)

)
∼ χ2

v,1−α (5.30)

Using chi-square assumes ‘large’ numbers of observations. The production of a profile is
rather computation intensive as a new optimisation has to be performed for every value on
the x-axis, for every parameter that requires a confidence interval.

5.3.2 Joint confidence regions for more parameters

The technique of profiling the likelihood function, as outlined in the previous section, also
works for more than one parameter. Just make sure that the degrees of freedom v is the same
as the difference in number of free parameters between the two sets θ1 and θ. Comparing
the confidence interval for a single parameter a to the confidence region for two parameters
(a and b) of the same model, however, produces a (for me, at least) counter-intuitive result.
The critical value of the χ2 distribution increases with increasing degrees of freedom; going
from one to two degrees, the 95% threshold increases from 3.84 to 5.99. Therefore, the
joint confidence region of a and b includes values of a that are outside the single-parameter
confidence interval for parameter a. For me, this result was paradoxical: clearly, the interval
and the region are both correctly calculated, so how can they give contrasting results?
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Some internet searching provided me with the right direction.1 Both the interval and the
joint region are correct, and I will try to explain how this can be understood.

Consider a model with two parameters, a and b. Using profile likelihoods, I derive 95%
confidence intervals for each of them. In a two-dimensional plot, these single-parameter
intervals would (rather naively, perhaps) indicate a rectangular joint region of confidence
(Fig. 5.1).
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Figure 5.1: Two single-parameter 95% confidence intervals would indicate a rectangular joint
region of confidence.

In practice, the joint confidence region of the two parameters will not be rectangular (al-
though it would likely be possible to construct a model and a data set with these proprties).
For example, it might be shaped as an ellipse. Imagine an ellipse that snugly fits the rect-
angular boundaries (Fig. 5.2). Now, the edges of the joint confidence region (the ellipse)
coincide with both single parameter intervals.
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Figure 5.2: Fitting an ellipsoid joint confidence region into the rectangular joint region indi-
cated by two single-parameter 95% confidence intervals.

The thing is now the white spaces within the rectangle. If the ellipse captures the x%
joint confidence region of a and b, the rectangle will contain more than x%. Since our single-
parameter intervals specify 95% intervals, the joint interval will capture less than that. In
other words: the joint 95% confidence should extend beyond the boundaries of the rectangle
(Fig. 5.3).

The edges of the ellipsoid are thus wider than the single-parameter intervals (shown in
Fig. 5.4). The reason is that the white spaces within the rectangle are excluded from the joint
interval. Values of parameter a smaller than its lower single-parameter confidence interval
are now possible, but only given certain values of parameter b.

1Especially, the web pages of Prof. Ranjan Maitra of the Iowa State University set me in the right direction.
In his lecture series http://www.public.iastate.edu/~maitra/stat501/lectures.html, with the lecture on
“Inference for Means – Confidence Regions”.

http://www.public.iastate.edu/~maitra/stat501/lectures.html
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Figure 5.3: The 95% joint confidence region in relation to the rectangular joint region indi-
cated by two single-parameter 95% confidence intervals.
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Figure 5.4: The edges of the 95% joint confidence region extend beyond the two single-
parameter 95% confidence intervals.

In summary, the single-parameter interval and the joint region tell a different part of the
same story. If we are interested in the uncertainty in parameter a, we should look at the
single-parameter interval for parameter a. If we are interested in the joint uncertainty in a
and b, we should focus on the joint confidence region. Parameter sets from within the joint
region can be used to generate model predictions with associated uncertainty bounds.2

5.3.3 Asymptotic standard errors

To calculate standard errors for the parameter estimates, it is popular to assume that the
maximum likelihood estimate for the parameters θ̂ follows a multivariate normal distribution.
This assumption holds asymptotically for ‘large’ data sets and converges more rapidly to this
asymptote for ‘well-behaved’ models. The profile likelihood is a more robust way to explore
the confidence intervals for the parameters, but is more calculation intensive.

The Fisher information matrix I is the square matrix with the second-order partial deriva-
tives of the log-likelihood to the parameters. These derivatives are evaluated in the maximum
likelihood value of the parameters (θ = θ̂).

2This is very similar to using a Bayesian sample from the posterior to make model predictions with un-
certainty bounds. The big difference is, however, that for a Bayesian sample from the posterior, one would
probably like to look at quantiles from the model predictions (e.g., the 2.5− 97.5% quantiles to produce 95%
credible bounds on model curves). The values from the joint confidence region as discussed here are, however,
already cut off at a certain confidence level (e.g., 95%). Therefore, it makes no sense to take quantiles on the
model predictions again.
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Iij(θ̂) = − δ2

δθiδθj
`(θ|Y+)

∣∣∣∣
θ=θ̂

(5.31)

≈ −`(θ̂ + εi + εj)− `(θ̂ + εi − εj)− `(θ̂ − εi + εj) + `(θ̂ − εi − εj)
4εiεj

(5.32)

The covariance matrix is the inverse of the information matrix:

Cov = I−1 (5.33)

The standard errors of the parameters can be derived from the diagonal variances:

σi = Cov
1/2
ii (5.34)

The matrix with correlation coefficients between the parameters can be obtained by normal-
ising each element of the covariance matrix with the product of the standard errors of the
parameters:

Corij =
Covij
σiσj

(5.35)
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